首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Attapulgite (AT)‐reinforced poly(vinyl alcohol) (PVA) nanocomposite films were prepared by solution‐casting technique. The nonisothermal crystallization behaviors of PVA bulk and PVA/AT nanocomposites have been investigated by differential scanning calorimetry (DSC). It has been found that the uniformly dispersed AT nanorods in the matrix have great influence on the glass transition temperature and crystallization behavior of PVA matrix. The Jeziorny method has been employed to analyze the DSC data. The results show that Jeziorny method could describe this system very well. Comparing with the PVA bulk, PVA/AT nanocomposites have higher crystallinity Xt, shorter semicrystallization time t1/2, and higher crystallization rate constant Zc. It can be concluded that AT can be used as an effective nucleating agent and has effects on the growth of crystallites in the crystallization process of PVA matrix. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 534–540, 2006  相似文献   

2.
Poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) (PHB‐HHx) and methoxy poly(ethylene glycol) (MPEG) blends were prepared using melt blending. The single glass transition temperature, Tg, between the Tgs of the two components and the negative χ value indicated that PHB‐HHx and MPEG formed miscible blends over the range of compositions studied. The Gordon–Taylor equation proved that there was an interaction between PHB‐HHx and MPEG in their blends. FTIR supported the presence of hydrogen bonding between the hydroxyl group of MPEG and the carbonyl group of PHB‐HHx. The spherulitic morphology and isothermal crystallization behavior of the miscible PHB‐HHx/MPEG blends were investigated at two crystallization temperatures (70 and 40 °C). At 70 °C, melting MPEG acted as a noncrystalline diluent that reduced the crystallization rate of the blends, while insoluble MPEG particles acted as a nucleating agent at 40 °C, enhancing the crystallization rate of the blends. However, no interspherulitic phase separation was observed at the two crystallization temperatures. The constant value of the Avrami exponent demonstrated that MPEG did not affect the three‐dimensional spherulitic growth mechanism of PHB‐HHx crystals in the blends, although the MPEG phase, such as the melting state or insoluble state, influenced the crystallization rate of the blends. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2852–2863, 2006  相似文献   

3.
The effect of α‐cyclodextrin (α‐CD) on the crystallization behavior of poly(3‐hydroxybutyrate) (PHB) was investigated with polarized optical microscopy, differential scanning calorimetry, and wide‐angle X‐ray diffraction. We found that the addition of α‐CD can greatly accelerate the crystallization of PHB and that α‐CD has a potential not only to enhance the nucleation but also to accelerate the crystallization of PHB. Compared to a conventional nucleation agent, such as talc, α‐CD is a natural product and has many advantages because it is environmentally friendly and safe to humans. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3461–3469, 2004  相似文献   

4.
Blends of isotactic (natural) poly(3‐hydroxybutyrate) (PHB) and poly(methyl methacrylate) (PMMA) are partially miscible, and PHB in excess of 20 wt % segregates as a partially crystalline pure phase. Copolymers containing atactic PHB chains grafted onto a PMMA backbone are used to compatibilize phase‐separated PHB/PMMA blends. Two poly(methyl methacrylate‐g‐hydroxybutyrate) [P(MMA‐g‐HB)] copolymers with different grafting densities and the same length of the grafted chain have been investigated. The copolymer with higher grafting density, containing 67 mol % hydroxybutyrate units, has a beneficial effect on the mechanical properties of PHB/PMMA blends with 30–50% PHB content, which show a remarkable increase in ductility. The main effect of copolymer addition is the inhibition of PHB crystallization. No compatibilizing effect on PHB/PMMA blends with PHB contents higher than 50% is observed with various amounts of P(MMA‐g‐HB) copolymer. In these blends, the graft copolymer is not able to prevent PHB crystallization, and the ternary PHB/PMMA/P(MMA‐g‐HB) blends remain crystalline and brittle. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1390–1399, 2002  相似文献   

5.
Poly(3‐hydroxybutyrate) (PHB)/layered double hydroxides (LDHs) nanocomposites were prepared by mixing PHB and poly(ethylene glycol) phosphonates (PEOPAs)‐modified LDH (PMLDH) in chloroform solution. Both X‐ray diffraction data and TEM micrographs of PHB/PMLDH nanocomposites indicate that the PMLDHs are randomly dispersed and exfoliated into the PHB matrix. In this study, the effect of PMLDH on the isothermal crystallization behavior of PHB was investigated using a differential scanning calorimeter (DSC) and polarized optical microscopy. Isothermal crystallization results of PHB/PMLDH nanocomposites show that the addition of 2 wt % PMLDH into PHB induced more heterogeneous nucleation in the crystallization significantly increasing the crystallization rate and reducing their activation energy. By adding more PMLDH into the PHB probably causes more steric hindrance of the diffusion of PHB, reducing the transportation ability of polymer chains during crystallization, thus increasing the activation energy. The correlation among crystallization kinetics, melting behavior and crystalline structure of PHB/PMLDH nanocomposites can also be discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3337–3347, 2006  相似文献   

6.
The crystallization behavior of pure PCL and PCL in blends with crosslinked rubber particles was studied under (non)isothermal crystallization conditions, where the rubber particles were grafted with PCL chains via hydrogen abstraction of the aliphatic moieties in PCL. The crystal growth and the organization of crystals into spherulitic superstructures are significantly influenced by the presence of the grafted rubber particles, which act as an excellent nucleating agent for PCL. The nucleating efficiency shows an exponential dependency on the PCL grafting density and, according to an Avrami analysis, an increased PCL grafting density increases the overall crystallization rate of the PCL matrix. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1438–1448, 2010  相似文献   

7.
Li  Yi  Han  Changyu  Yu  Yancun  Xiao  Liguang  Shao  Yan 《Journal of Thermal Analysis and Calorimetry》2019,135(4):2049-2058

This work examined the effect of content and particle size of nucleating agent on nonisothermal melt crystallization behavior of poly(l-lactide) (PLLA). Two different particle sizes of talc were used as the nucleating agents of PLLA. Scanning electron microscopy observation revealed that both big and small particles of talc were homogeneously dispersed in the PLLA matrix. Talc significantly accelerated the nonisothermal melt crystallization rate of PLLA. The effect of smaller particle talc on crystallization was obviously better than that of the bigger one. The activation energy based on Friedman equation was evaluated. Lower activation energy was obtained for nucleated PLLA. Finally, addition of talc did not modify the crystal structure.

  相似文献   

8.
The effect of aging on the fractional crystallization of the poly(ethylene oxide) (PEO) component in the PEO/poly(3‐hydroxybutyrate) (PHB) blend has been investigated. The partial miscibility of the PEO/PHB blends with high PEO molecular weight (Mv = 2.0 × 105 g/mol) was confirmed by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis. The fractional crystallization behavior of the PEO component in the PEO/PHB blends with low PEO content (not more than 30 wt% of PEO), before and after aging under vacuum at 25 °C for 6 months, were compared by DSC, fourier transform infrared microscopic spectroscopy, small angle X‐ray diffraction, and scanning electron microscopy. It was confirmed that nearly all the PEO components remain trapped within interlamellar regions of PHB for the PEO/PHB blends before aging. Under this condition, the crystallization of PEO is basically induced by much less active heterogeneities or homogeneous nucleation at high supercoolings. While, after the same PEO/PHB samples were stored at 25 °C in vacuum for 6 months, a part of the PEO component was expelled from the interlamellar region of PHB. Under this condition, the expelled PEO forms many separate domains with bigger size and crystallizes at low supercoolings by active heterogeneous nucleation, whereas the crystallization of PEO in the interlamellar region is still mainly induced by less active heterogeneities or homogeneous nucleation at extreme supercoolings. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2665–2676, 2005  相似文献   

9.
The effect of nucleating agents on the polymorphic crystallization behavior of poly(butylene adipate) (PBA) was studied with four kinds of commercially available nucleating agents, such as talc and boron nitride. The crystal structures of the α and β forms were studied with wide‐angle X‐ray diffraction. The β‐to‐α‐crystal transformation of PBA in the absence and presence of the nucleating agents in isothermal crystallization and nonisothermal crystallization processes was studied with differential scanning calorimetry and polarized optical microscopy. In both isothermal and nonisothermal crystallization, the introduction of nucleating agents selectively initiated the nucleation of the α‐form crystal, which was relatively slow in the absence of nucleating agents. The nucleating activity of the four kinds of nucleating agents in the crystallization of the PBA α‐form crystal was determined by the study of the nonisothermal crystallization, spherulite morphology, and isothermal kinetics. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2340–2351, 2005  相似文献   

10.
Nonisothermal crystallization and melting behavior of poly(β‐hydroxybutyrate) (PHB)–poly(vinyl acetate) (PVAc) blends from the melt were investigated by differential scanning calorimetry using various cooling rates. The results show that crystallization of PHB from the melt in the PHB–PVAc blends depends greatly upon cooling rates and blend compositions. For a given composition, the crystallization process begins at higher temperatures when slower scanning rates are used. At a given cooling rate, the presence of PVAc reduces the overall PHB crystallization rate. The Avrami analysis modified by Jeziorny and a new method were used to describe the nonisothermal crystallization process of PHB–PVAc blends very well. The double‐melting phenomenon is found to be caused by crystallization during heating in DSC. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 443–450, 1999  相似文献   

11.
To improve the drawability of poly(vinyl alcohol) (PVA) thermal products, poly(ethylene oxide) (PEO), a special resin with good flexibility, excellent lubricity, and compatibility with many resins, was applied, and the Fourier transform infrared spectroscopy, dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and wide‐angle X‐ray diffraction (WXRD) were adopted to study the hydrogen bonds, water states, thermal properties, crystal structure, and nonisothermal crystallization of modified PVA. It was found that PEO formed strong hydrogen bonds with water and PVA, thus weakened the intra‐ and inter‐hydrogen bonds of PVA, changed the aggregation states of PVA chains, and decreased its melting point and crystallinity. Moreover, the interactions among PVA, water, and PEO retarded the water evaporation and made more water remain in the system to plasticize PVA. The existence of PEO also slowed down the melt crystallization process of PVA, however, increased the nucleation points of system, thus made more and smaller spherulites formed. The weakened crystallization capability of PVA and the lubrication of PEO made PVA chains to have more mobility under the outside force and obtain high mechanical properties. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1946–1954, 2010  相似文献   

12.
The miscibility, spherulite growth kinetics, and morphology of binary blends of poly(β‐hydroxybutyrate) (PHB) and poly(methyl acrylate) (PMA) were studied with differential scanning calorimetry, optical microscopy, and small‐angle X‐ray scattering (SAXS). As the PMA content increases in the blends, the glass‐transition temperature and cold‐crystallization temperature increase, but the melting point decreases. The interaction parameter between PHB and PMA, obtained from an analysis of the equilibrium‐melting‐point depression, is −0.074. The presence of an amorphous PMA component results in a reduction in the rate of spherulite growth of PHB. The radial growth rates of spherulites were analyzed with the Lauritzen–Hoffman model. The spherulites of PHB were volume‐filled, indicating the inclusion of PMA within the spherulites. The long period obtained from SAXS increases with increased PMA content, implying that the amorphous PMA is entrapped in the interlamellar region of PHB during the crystallization process of PHB. All the results presented show that PHB and PMA are miscible in the melt. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1860–1867, 2000  相似文献   

13.
Poly(3‐hydroxybutyrate) (PHB)/poly(glycidyl methacrylate) (PGMA) blends were prepared by a solution‐precipitation procedure. The compatibility and thermal decomposition behavior of the PHB/PGMA blends was studied with differential scanning calorimetry, thermogravimetric analysis, and differential thermal analysis (DTA). The blends were immiscible in the as‐blended state, but for the blends with PGMA contents of 50 wt % or more, the compatibility was dramatically changed after 1 min of annealing at 200 °C. In addition, PHB/PGMA blends showed higher thermal stability, as measured by maximum decomposition temperatures and residual weight during thermal degradation. This was probably due to crosslinking reactions of the epoxide groups in the PGMA component with the carboxyl chain ends of PHB fragments during the degradation process, and the occurrence of such reactions can be assigned to the exothermic peaks in the DTA thermograms. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 351–358, 2002  相似文献   

14.
The development of the poly(3‐hydroxybutyrate) (PHB) morphology in the presence of already existent poly(vinylidene fluoride) (PVDF) spherulites was studied by two‐stage solidification with two separate crystallization temperatures. PVDF formed irregular dendrites at lower temperatures and regular, banded spherulites at elevated temperatures. The transition temperature of the spherulitic morphology from dendrites to regular, banded spherulites increased with increasing PVDF content. A remarkable amount of PHB was included in the PVDF dendrites, whereas PHB was rejected into the remaining melt from the banded spherulites. When PVDF crystallized as banded spherulites, PHB could consequently crystallize only around them, if at all. In contrast, PHB crystallized with a common growth front, starting from a defined site in the interfibrillar regions of volume‐filling PVDF dendrites. It formed by itself dendritic spherulites that included a large number of PVDF spherulites. For blends with a PHB content of more than 80 wt %, for which the PVDF dendrites were not volume‐filling, PHB first formed regular spherulites. Their growth started from outside the PVDF dendrites but could later interpenetrate them, and this made their own morphology dendritic. These PHB spherulites melted stepwise because the lamellae inside the PVDF dendrites melted at a lower temperature than those from outside. This reflected the regularity of the two fractions of the lamellae because that of those inside the dendrites of PVDF was controlled by the intraspherulitic order of PVDF, whereas that from outside was only controlled by the temperature and the melt composition. The described morphologies developed without mutual nucleating efficiency of the components. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 873–882, 2003  相似文献   

15.
The crystallization behavior of poly(ethylene terephthalate) (PET) with disodium terephthalate (DST) as nucleating agent was investigated. A detailed analysis of the crystallization course from the melt was made with the Avrami expression. The results demonstrated that DST additive can promote the PET crystallization rate in its entire crystallizable temperature range, and the acceleration degree of DST decreases with increasing temperature after a temperature higher than 180 °C. The values of the Avrami exponent indicated that the crystallization mode in Avrami theory is not suitable for the crystallization of these polymers, and the mechanism of the heterogeneous nucleation on PET crystallization is discussed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2135–2144, 2003  相似文献   

16.
The improvement in oxygen barrier properties of poly(ethylene terephthalate) (PET) by incorporation of an impermeable phase such as crystallinity or talc platelets was examined. Crystallinity was induced by crystallization from the glassy state (cold crystallization). Microlayering was used to create talc‐filled structures with controlled layer architecture. The reduction of permeability in crystallized and talc‐filled PET was well described by Nielsen's model. Changes in permeability of crystalline PET could not be ascribed to the filler effect of crystallites only. Our data on solubility, obtained on the basis of measurements of the oxygen transport coefficients, confirmed a previous finding that the amorphous phase density of PET decreases upon crystallization. The data were amenable to interpretation by free volume theory. Talc‐filled materials processed by different methods showed the same permeability; however, much better mechanical properties were achieved by microlayering. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 847–857, 1999  相似文献   

17.
Enhanced nonisothermal crystallization of a series of poly(butylene succinate‐co‐terephthalate) (PBST) by poly(vinyl butyral) (PVB) as a macromolecular nucleating agent has been examined systematically with various techniques and theoretical modeling. The role of PVB depends strongly on the butylene terephthalate content, PVB content, and cooling rate. The (0.3–0.7 wt %) PVB reduces the spherulitic size, but considerably increases the peak temperature of crystallization, for example, by 28 °C for the PBST with 50 mol % terephthalic acid. The effects of PVB are believed to stem from its unique molecular structure. Both the hydroxyl and butyral groups of PVB may synergistically participate in nucleating PBSTs for crystallization because of favorable secondary interaction and affinity of butyral groups with butylene succinate units of PBSTs. Only the Tobin model suffices to describe the nonisothermal crystallization kinetics, while the modified Avrami model is suitable for limited crystallinity. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 658–672  相似文献   

18.
Fully-biodegradable bacterial poly(3-hydroxybutyrate) (PHB)/chemosynthetic poly(vinyl alcohol) (PVA) blend films with compositional gradient from one surface to the other surface of the films were prepared by a dissolution-diffusion technique. Three kinds of PVA samples, high- and low-molecular weight atactic PVA and highly syndiotactic PVA (s-PVA), were used in order to investigate the effects of molecular weight and tactic structure on the generation of compositional gradient. The solution of PHB in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), which is also a good solvent for PVA, was cast on the PVA film and then the solvent HFIP was evaporated. By selecting the optimum volume of solvent and the evaporation rate, the PHB/PVA blend film with compositional gradient was obtained. The formation of compositional gradient was confirmed by FT-IR microscopy and ATR-FT-IR analysis. The 50%/50% PHB/s-PVA blend film with a nearly ideal compositional gradient, that is, the composition of PHB (or PVA) in the film changing gradually from 100% at one surface to 0% at the other surface of the film was obtained by casting PHB/HFIP solution on to the s-PVA film. Positional dependence of the absorbance of C==O and OH stretching bands along the film thickness direction for the PHB/S-PVA cast films.  相似文献   

19.
The influence of thermal history on morphology, melting, and crystallization behavior of bacterial poly(3‐hydroxybutyrate) (PHB) has been investigated using temperature‐modulated DSC (TMDSC), wide‐angle X‐ray diffraction (WAXRD) and polarized optical microscopy (POM). Various thermal histories were imparted by crystallization with continuous and different modulated cooling programs that involved isoscan and cool–heat segments. The subsequent melting behavior revealed that PHB experienced secondary crystallization during heating and the extent of secondary crystallization varied with the cooling treatment. PHB crystallized under slow, continuous, and moderate cooling rates were found to exhibit double melting behavior due to melting of TMDSC scan‐induced secondary crystals. PHB underwent considerable secondary crystallization/annealing that took place under modulated cooling conditions. The overall melting behavior was interpreted in terms of recrystallization and/or annealing of crystals. Interestingly, the PHB analyzed by temperature modulation programs showed a broad exotherm before the melting peak in the nonreversing heat capacity curve and a multiple melting reversing curve, verifying that the melting–recrystallization and remelting process was operative. WAXRD and POM studies supported the correlations from DSC and TMDSC results. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 70–78, 2006  相似文献   

20.
The confined crystallization behavior, melting behavior, and nonisothermal crystallization kinetics of the poly(ethylene glycol) block (PEG) in poly(L ‐lactide)–poly(ethylene glycol) (PLLA–PEG) diblock copolymers were investigated with wide‐angle X‐ray diffraction and differential scanning calorimetry. The analysis showed that the nonisothermal crystallization behavior changed from fitting the Ozawa equation and the Avrami equation modified by Jeziorny to deviating from them with the molecular weight of the poly(L ‐lactide) (PLLA) block increasing. This resulted from the gradual strengthening of the confined effect, which was imposed by the crystallization of the PLLA block. The nucleation mechanism of the PEG block of PLLA15000–PEG5000 at a larger degree of supercooling was different from that of PLLA2500–PEG5000, PLLA5000–PEG5000, and PEG5000 (the numbers after PEG and PLLA denote the molecular weights of the PEG and PLLA blocks, respectively). They were homogeneous nucleation and heterogeneous nucleation, respectively. The PLLA block bonded chemically with the PEG block and increased the crystallization activation energy, but it provided nucleating sites for the crystallization of the PEG block, and the crystallization rate rose when it was heterogeneous nucleation. The number of melting peaks was three and one for the PEG homopolymer and the PEG block of the diblock copolymers, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3215–3226, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号