首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a new high‐order finite difference discretization strategy, which is based on the Richardson extrapolation technique and an operator interpolation scheme, to solve convection diffusion equations. For a particular implementation, we solve a fine grid equation and a coarse grid equation by using a fourth‐order compact difference scheme. Then we combine the two approximate solutions and use the Richardson extrapolation to compute a sixth‐order accuracy coarse grid solution. A sixth‐order accuracy fine grid solution is obtained by interpolating the sixth‐order coarse grid solution using an operator interpolation scheme. Numerical results are presented to demonstrate the accuracy and efficacy of the proposed finite difference discretization strategy, compared to the sixth‐order combined compact difference (CCD) scheme, and the standard fourth‐order compact difference (FOC) scheme. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 18–32, 2004.  相似文献   

2.
In this article, an efficient fourth‐order accurate numerical method based on Padé approximation in space and singly diagonally implicit Runge‐Kutta method in time is proposed to solve the time‐dependent one‐dimensional reaction‐diffusion equation. In this scheme, we first approximate the spatial derivative using the second‐order central finite difference then improve it to fourth‐order by applying Padé approximation. A three stage fourth‐order singly diagonally implicit Runge‐Kutta method is then used to solve the resulting system of ordinary differential equations. It is also shown that the scheme is unconditionally stable, and is suitable for stiff problems. Several numerical examples are solved by the scheme and the efficiency and accuracy of the new scheme are compared with two widely used high‐order compact finite difference methods. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1423–1441, 2011  相似文献   

3.
In this paper, Multiquadric quasi-interpolation method is used to approximate fractional integral equations and fractional differential equations. Firstly, we construct two operators for approximating the Hadamard integral-differential equation based on quasi interpolators, and verify their properties and order of convergence. Secondly, we obtain that the approximation order of the integral scheme is 3, and the approximation order of the differential scheme is $3-\mu$ for $\mu(0<\mu<1)$ order fractional Hadamard derivative. Finally, The results of numerical experiments show that the numerical results are in greement with the theoretical analysis.  相似文献   

4.
Quasi-interpolation is very useful in the study of approximation theory and its applications,since it can yield solutions directly without the need to solve any linear system of equations.Based on the good performance,Chen and Wu presented a kind of multiquadric (MQ) quasi-interpolation,which is generalized from the L D operator,and used it to solve hyperbolic conservation laws and Burgers’ equation.In this paper,a numerical scheme is presented based on Chen and Wu’s method for solving the Korteweg-de Vries (KdV) equation.The presented scheme is obtained by using the second-order central divided difference of the spatial derivative to approximate the third-order spatial derivative,and the forward divided difference to approximate the temporal derivative,where the spatial derivative is approximated by the derivative of the generalized L D quasi-interpolation operator.The algorithm is very simple and easy to implement and the numerical experiments show that it is feasible and valid.  相似文献   

5.
The three‐dimensional displacement of two‐phase flow in porous media is a preliminary problem of numerical simulation of energy science and mathematics. The mathematical model is formulated by a nonlinear system of partial differential equations to describe incompressible miscible case. The pressure is defined by an elliptic equation, and the concentration is defined by a convection‐dominated diffusion equation. The pressure generates Darcy velocity and controls the dynamic change of concentration. We adopt a conservative block‐centered scheme to approximate the pressure and Darcy velocity, and the accuracy of Darcy velocity is improved one order. We use a block‐centered upwind multistep method to solve the concentration, where the time derivative is approximated by multistep method, and the diffusion term and convection term are treated by a block‐centered scheme and an upwind scheme, respectively. The composite algorithm is effective to solve such a convection‐dominated problem, since numerical oscillation and dispersion are avoided and computational accuracy is improved. Block‐centered method is conservative, and the concentration and the adjoint function are computed simultaneously. This physical nature is important in numerical simulation of seepage fluid. Using the convergence theory and techniques of priori estimates, we derive optimal estimate error. Numerical experiments and data show the support and consistency of theoretical result. The argument in the present paper shows a powerful tool to solve the well‐known model problem.  相似文献   

6.
We give a comparison of the efficiency of three alternative decomposition schemes for the approximate solution of multi-term fractional differential equations using the Caputo form of the fractional derivative. The schemes we compare are based on conversion of the original problem into a system of equations. We review alternative approaches and consider how the most appropriate numerical scheme may be chosen to solve a particular equation.  相似文献   

7.
In this paper, a new numerical method is proposed to solve one-dimensional Burgers’ equation using multiquadric (MQ) radial basis function (RBF) for spatial approximation and a second-order compact finite difference scheme for temporal approximation. The numerical results obtained by this way for different Reynolds number have been compared with the existing numerical schemes to show the accuracy and efficiency of the approach. To show the superiority of this meshless method, numerical experiments with non-uniform MQ interpolation node distribution are also performed.  相似文献   

8.
An efficient method for nonlinear fractional differential equations is proposed in this paper. This method consists of 2 steps. First, we linearize the nonlinear operator equation by quasi‐Newton's method, which is based on Fréchet derivative. Then we solve the linear fractional differential equations by the simplified reproducing kernel method. The convergence of the quasi‐Newton's method is discussed for the general nonlinear case as well. Finally, some numerical examples are presented to illustrate accuracy, efficiency, and simplicity of the method.  相似文献   

9.
通过分段线性插值多项式方法构造了一类含有Hadamard有限部分积分的非线性常微分方程的数值离散格式.在时间方向上, 利用分段线性插值多项式方法对分数阶导数项进行近似, 并通过二阶向后差分格式来离散整数阶导数项.经过详细的证明, 得到了收敛精度为O(τmin{1+α,1+β})的误差估计结果.最后,通过数值算例和理论结果的对比直观地说明了理论分析的正确性.  相似文献   

10.
In this paper, a Kansa’s method is designed to solve numerically the Monge-Ampère equation. The primitive Kansa’s method is a meshfree method which applying the combination of some radial basis functions (such as Hardy’s MQ) to approximate the solution of the linear parabolic, hyperbolic and elliptic problems. But this method is deteriorated when is used to solve nonlinear partial differential equations. We approximate the solution in some local triangular subdomains by using the combination of some cubic polynomials. Then the given problems can be computed in each subdomains independently. We prove the stability and convergence of the new method for the elliptic Monge-Ampère equation. Finally, some numerical experiments are presented to demonstrate the theoretical results.  相似文献   

11.
In this paper, we apply the boundary integral equation technique and the dual reciprocity boundary elements method (DRBEM) for the numerical solution of linear and nonlinear time‐fractional partial differential equations (TFPDEs). The main aim of the present paper is to examine the applicability and efficiency of DRBEM for solving TFPDEs. We employ the time‐stepping scheme to approximate the time derivative, and the method of linear radial basis functions is also used in the DRBEM technique. This method is improved by using a predictor–corrector scheme to overcome the nonlinearity that appears in the nonlinear problems under consideration. To confirm the accuracy of the new approach, several examples are presented. The convergence of the DRBEM is studied numerically by comparing the exact solutions of the problems under investigation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
研究时间Caputo分数阶对流扩散方程的高效高阶数值方法.对于给定的时间分数阶偏微分方程,在时间和空间方向分别采用基于移位广义Jacobi函数为基底和移位Chebyshev多项式运算矩阵的谱配置法进行数值求解.这样得到的数值解可以很好地逼近一类在时间方向非光滑的方程解.最后利用一些数值例子来说明该数值方法的有效性和准确性.  相似文献   

13.
We consider an optimal control problem for systems governed by ordinary differential equations with control constraints. The state equation is discretized by the explicit fourth order Runge-Kutta scheme and the controls are approximated by discontinuous piecewise affine ones. We then propose an approximate gradient projection method that generates sequences of discrete controls and progressively refines the discretization during the iterations. Instead of using the exact discrete directional derivative, which is difficult to calculate, we use an approximate derivative of the cost functional defined by discretizing the continuous adjoint equation by the same Runge-Kutta scheme and the integral involved by Simpson's integration rule, both involving intermediate approximations. The main result is that accumulation points, if they exist, of sequences constructed by this method satisfy the weak necessary conditions for optimality for the continuous problem. Finally, numerical examples are given.  相似文献   

14.
We present a second‐order finite difference scheme for approximating solutions of a mathematical model of erythropoiesis, which consists of two nonlinear partial differential equations and one nonlinear ordinary differential equation. We show that the scheme achieves second‐order accuracy for smooth solutions. We compare this scheme to a previously developed first‐order method and show that the first order method requires significantly more computational time to provide solutions with similar accuracy. We also compare this numerical scheme with other well‐known second‐order methods and show that it has better capability in approximating discontinuous solutions. Finally, we present an application to recovery after blood loss. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

15.
We present a sixth-order explicit compact finite difference scheme to solve the three-dimensional (3D) convection-diffusion equation. We first use a multiscale multigrid method to solve the linear systems arising from a 19-point fourth-order discretization scheme to compute the fourth-order solutions on both a coarse grid and a fine grid. Then an operator-based interpolation scheme combined with an extrapolation technique is used to approximate the sixth-order accurate solution on the fine grid. Since the multigrid method using a standard point relaxation smoother may fail to achieve the optimal grid-independent convergence rate for solving convection-diffusion equations with a high Reynolds number, we implement the plane relaxation smoother in the multigrid solver to achieve better grid independency. Supporting numerical results are presented to demonstrate the efficiency and accuracy of the sixth-order compact (SOC) scheme, compared with the previously published fourth-order compact (FOC) scheme.  相似文献   

16.
Predicting the horizontal groundwater flow in unsaturated porous media is a challenge in many areas of science and engineering. The governing equation associated with this phenomenon is a nonlinear partial differential equation known as the Richards equation. However, the numerical results obtained using this equation can differ substantially from the experimental results. In order to overcome this difficulty, a new version of the Richards equation was proposed recently that considers a time derivative of fractional order. In this study, we present a numerical method for solving this fractional Richards equation. Our method comprises an adaptive time marching scheme that uses Picard iterations to solve the corresponding nonlinear equations. A computational code was implemented for the proposed method using the Scilab programming language. We performed numerical simulations of the anomalous diffusion of water in a white siliceous brick and showed that the numerical results were consistent with the available experimental data.  相似文献   

17.
We present a numerical scheme to solve the fully 3D Maxwell–Vlasov equations. The aim is to investigate the interaction of a laser pulse with a plasma and the acceleration of electrons and ions. We choose the approach based on numerical particles to approximate the distribution function interpreted, according to the Klimontovich formalism, as a probability distribution function. The key points are a high order implicit scheme to approximate the space differential operators and a time evolution scheme of adequate accuracy.  相似文献   

18.
在各向异性网格下,针对具有Caputo导数的二维多项时间分数阶扩散方程,给出了线性三角形元的高精度分析.首先,基于线性三角形元和改进的L1格式,建立了一个全离散逼近格式,并证明了其无条件稳定性;其次,利用有限元插值算子与Riesz投影算子之间的关系及相关的高精度结果,导出了超逼近性质.进而,借助于插值后处理技术得到了超收敛估计.值得指出的是,单独利用插值算子或Riesz投影都无法得到上述超逼近和超收敛结果.最后,利用数值算例验证了理论分析的正确性.此外,对一些常见的有限单元在该方程的数值逼近方面,作了进一步探讨.  相似文献   

19.
We present an approximate Maximum Likelihood estimator for univariate Itô stochastic differential equations driven by Brownian motion, based on numerical calculation of the likelihood function. The transition probability density of a stochastic differential equation is given by the Kolmogorov forward equation, known as the Fokker-Planck equation. This partial differential equation can only be solved analytically for a limited number of models, which is the reason for applying numerical methods based on higher order finite differences.The approximate likelihood converges to the true likelihood, both theoretically and in our simulations, implying that the estimator has many nice properties. The estimator is evaluated on simulated data from the Cox-Ingersoll-Ross model and a non-linear extension of the Chan-Karolyi-Longstaff-Sanders model. The estimates are similar to the Maximum Likelihood estimates when these can be calculated and converge to the true Maximum Likelihood estimates as the accuracy of the numerical scheme is increased. The estimator is also compared to two benchmarks; a simulation-based estimator and a Crank-Nicholson scheme applied to the Fokker-Planck equation, and the proposed estimator is still competitive.  相似文献   

20.
In this article we propose a numerical scheme to solve the one‐dimensional hyperbolic telegraph equation. The method consists of expanding the required approximate solution as the elements of shifted Chebyshev polynomials. Using the operational matrices of integral and derivative, we reduce the problem to a set of linear algebraic equations. Some numerical examples are included to demonstrate the validity and applicability of the technique. The method is easy to implement and produces very accurate results. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号