首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Yarrowia lipolytica (YLL), Candida rugosa (CRL), and porcine pancreatic lipase (PPL) were employed successfully as catalysts in the enzymatic ring‐opening polymerization (ROP) of ε‐caprolactone in the presence of 1‐ethyl‐3‐methylimidazolium tetrafluoroborate ([EMIM][BF4]), 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([BMIM][BF4]), 1‐butylpyridinium tetrafluoroborate ([BuPy][BF4]), 1‐butylpyridinium trifluoroacetate ([BuPy][CF3COO]), 1‐ethyl‐3‐methylimidazolium nitrate ([EMIM][NO3]) ionic liquids. Poly(ε‐caprolactone)s (PCLs) with molecular weights (Mn) in the range of 300–9000 Da were obtained. 1H‐ and 13C‐NMR analyses on PCLs formed by YLL, CRL, and PPL showed asymmetric telechelic α‐hydroxy‐ω‐carboxylic acid end groups. Differences between CP‐MAS and MAS spectra are observed and discussed in terms of morphology. MALDI‐TOF spectra show the formation of at least seven species. Differential scanning calorimetry (DSC) and Wide Angle X‐Ray Scattering (WAXS) results demonstrate the high degree of crystallinity present in all the polyesters. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5792–5805, 2009  相似文献   

2.
Four types of ionic polyrotaxane (PR) derivatives, that is, carboxymethylated, sulfoethylated, diethylaminoethylated, and trimethylammoniohydroxypropylated PRs, were successfully prepared starting from the same PR consisting of poly(ethylene glycol) as an axis and α‐cyclodextrins as ring molecules. The structures of the ionic PR derivatives were analyzed by 1H and 13C nuclear magnetic resonance (NMR), attenuated‐total reflection Fourier transform‐infrared, and colloidal titration. Degrees of substitution of the ionic PRs were calculated from results of 1H NMR and colloidal titrations; both sets of results satisfactorily agreed. Cross‐linking of sulfoethylated and quaternized PRs yielded ionic slide‐ring gels carrying sulfoethyl and quaternary ammonium groups on the mobile cross‐links, respectively. The former gel showed intriguing phenomena, including a large degree of swelling of up to 1147, drastic change in its swelling ratio by the presence of electrolyte and bending under a moderate applied electric field (7 V/cm). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
Novel poly(ionic liquids) were synthesized and immobilized on prepared magnetic nanoparticles, which were used to extract pesticides from fruit and vegetable samples by dispersive solid‐phase extraction prior to high‐performance liquid chromatography analysis. Compared with monomeric ionic liquids, poly(ionic liquids) have a larger effective contact area and higher viscosity, so they can achieve higher extraction efficiency and be used repeatedly without a decrease in analyte recovery. The immobilized poly(ionic liquids) were rapidly separated from the sample matrix, providing a simple approach for sample pretreatment. The nature and volume of the desorption solvent and amount of poly(ionic liquid)‐modified magnetic material were optimized for the extraction process. Under optimum conditions, calibration curves were linear (R2 > 0.9988) for pesticide concentrations in the range of 0.100–10.000 μg/L. The relative standard deviations for repeated determinations of the four analytes were 2.29–3.31%. The limits of detection and quantification were 0.29–0.88 and 0.97–2.93 μg/L, respectively. Our results demonstrate that the developed poly(ionic liquid)‐modified material is an effective absorbent to extract pesticides from fruit and vegetable samples.  相似文献   

4.
Synthesis of a cyclodextrin (CD) polyrotaxane is achieved for the first time by simultaneous free radical polymerization of isoprene, threading by CD, and stoppering by copolymerization of styrene. This reaction is performed in an eco‐friendly manner in an aqueous medium similar to classical emulsion polymerization. Threaded CD rings of the polyrotaxane are cross‐linked by hexamethylene diisocyanate, leading to highly elastic slide‐ring gels.

  相似文献   


5.
Multiwalled carbon nanotubes grafted with vinyl immidazolium‐based ionic liquid (MWCNT‐IL) were synthesized and utilized as a crosslinking agent for the preparation and evaluation of a polymeric gel as a new class of organic solvent absorbent. Based on our earlier organic solvent‐absorbents, the present polymeric gel exhibited high organic solvent absorbency, fast organic solvent absorption rate, and good reusability. To prepare such polymeric gel, radical polymerization was carried out with dodecyl methacrylate and butyl acrylate as comonomers, MWCNT‐ILs as crosslinking agent, and azoisobutyronitrile as initiator, providing polymeric gel in a quantitative yield. The polymeric gel synthesized under the optimized polymerization conditions absorbed 79 times the dry weight in CCl4, 57 times in toluene, 96 in CHCl3, and 100 times in CH2Cl2. The reusability of the prepared‐polymeric gel was also checked which established that the gels could be recycled and reused for at least 10 times. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3166–3172  相似文献   

6.
Use of ionic liquids as reaction media was investigated in the design of an environmentally friendly single electron transfer‐living radical polymerization (SET‐LRP) for acrylonitrile (AN) without any ligand by using Fe(0) wire as catalyst and 2‐bromopropionitrile as initiator. 1‐Methylimidazolium acetate ([mim][AT]), 1‐methylimidazolium propionate ([mim][PT]), and 1‐methylimidazolium valerate ([mim][VT]) were applied in this study. First‐order kinetics of polymerization with respect to the monomer concentration, linear increase of the molecular weight, and narrow polydispersity with monomer conversion showed the controlled/living radical polymerization characters. The sequence of the apparent polymerization rate constant of SET‐LRP of AN was kapp ([mim][AT]) > kapp ([mim][PT]) > kapp ([mim][VT]). The living feature of the polymerization was also confirmed by chain extensions of polyacrylonitrile with methyl methacrylate. All three ionic liquids were recycled and reused and had no obvious effect on the controlled/living nature of SET‐LRP of AN. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
8.
《先进技术聚合物》2018,29(6):1727-1732
Using ionic liquids (ILs) as the reaction solvent for the synthesis of prepolymer polyamide of poly(p‐phenylene benzoxazole) (PBO) was investigated. The optimum condition of prepolymer preparation was determined in ILs. A series of 1,3‐dialkylimidazolium ILs were used to be the reaction media of the polycondensation. The relationship between the molecular weight of prepolymer and the structure of ILs was analysed by changing the structure of the cation and species of anion of ILs. In order to prove the feasibility of the transformation, the prepolymer was used to prepare PBO in polyphosphoric acid media, and the conversion process was analyzed. The spinnability of the PBO solution was explored by the preparation of PBO fibers. The basic mechanical properties of PBO single fiber were tested. In a word, using 1,3‐dialkylimidazolium ILs as the reaction solvents was feasible for the synthesis of high‐molecular‐weight PBO prepolymer, which could be a promising PBO preparation method.  相似文献   

9.
Ionic liquids have been functionalized for modern applications. The functional ionic liquids are also called task‐specific ionic liquids. Various task‐specific ionic liquids with certain groups have been constructed and exploited widely in the field of separation. To take advantage of their properties in separation science, task‐specific ionic liquids are generally used in techniques such as liquid–liquid extraction, solid‐phase extraction, gas chromatography, high‐performance liquid chromatography, and capillary electrophoresis. This review mainly covers original research papers published in the last five years, and we will focus on task‐specific ionic liquids as the chiral selectors in chiral resolution and as extractant or sensor for biological samples and metal ion purification.  相似文献   

10.
The fabrication of novel poly(ionic liquids)‐modified polystyrene (PSt) magnetic nanospheres (PILs‐PMNPs) by a one‐pot miniemulsion copolymerization reaction was achieved through an efficient microwave‐assisted synthesis method. The morphology, structure, and magnetic behavior of the as‐prepared magnetic materials were characterized by using transmission electron microscopy, vibrating sample magnetometry, etc. The magnetic materials were utilized as sorbents for the extraction of phthalate esters (PAEs) from beverage samples followed by high‐performance ultrafast liquid chromatography analysis. Significant extraction parameters that could affect the extraction efficiencies were investigated particularly. Under optimum conditions, good linearity was obtained in the concentration range of 0.5–50 (dimethyl phthalate), 0.3–50 (diethyl phthalate), 0.2–50 (butyl benzyl phthalate), and 0.4–50 μg/L (di‐n‐butyl phthalate), with correlation coefficients R 2 > 0.9989. Limits of detection were in the range 125–350 pg. The proposed method was successfully applied to determine PAEs from beverage samples with satisfactory recovery ranging from 77.8 to 102.1% and relative standard deviations ranging from 3.7 to 8.4%. Comparisons of extraction efficiency with PSt‐modified MNPs as sorbents were performed. The results demonstrated that PILs‐PMNPs possessed an excellent adsorption capability toward the trace PAE analytes.  相似文献   

11.
A nonaqueous dispersion of poly(3,4‐ethylenedioxythiophene) (PEDOT) was prepared with the use of polymeric ionic liquid (PIL) as a polymerization template and phase transfer medium. A detailed investigation was performed to understand the role of PIL in the course of polymerization and phase transfer reaction. On the basis of our findings from X‐ray photoelectric spectroscopy (XPS), we propose a mechanism by which the PIL leads to the nanostructured PEDOT colloids in various organic solvents and thus facilitating smoother surface morphologies of the PEDOT‐PIL films. In addition, the enhancement of charge transport was observed for PEDOT‐PIL complex when compared with PEDOT without PIL. Raman spectroscopy indicates that there is a reduced interaction between the charge carriers on the PEDOT and the counter ions bound to PIL, thus promoting charge carrier hopping rates. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6872–6879, 2008  相似文献   

12.
Rigid, helical polyisocyanodipeptides derived from alanine (PIAAs) that form lyotropic liquid‐crystalline (LC) phases in tetrachloroethane are presented. An investigation by optical microscopy between crossed polarizers demonstrated that PIAAs prepared by the polymerization of isocyanodipeptide monomers with an activated tetrakis isocyanide nickel(II) catalyst could form cholesteric LC phases in tetrachloroethane in concentrations between 18 and 30 wt %. Cholesteric LC phases that were formed in solutions of greater than 25 wt % displayed a reversal of the cholesteric helix upon annealing at 50 °C. Diastereomeric PIAA mixtures displayed cholesteric LC behavior only when the PIAAs had the same helix screw sense. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 981–988, 2007  相似文献   

13.
In this work, using divinylbenzene (D), 1‐vinylimidazole (V) and 1‐vinyl‐3‐butylimidazolium bromide ([VBIM][Br]) as monomers, the binary‐monomer poly (ionic liquids) (PILs) and ternary‐monomer PILs were successfully synthesized, via hydrothermal polymerization and anion exchange, sequentially. Compared with each other, the ternary polymeric acidic IL catalyst has a clear spongy porous structure, while having a more stable macroporous structure, a larger specific surface area, more acidic groups and more active sites. Catalytic performance of catalyst was investigated through the alkylation of o‐xylene and styrene. The effect of the amount of IL added and the length of the cation chain on the ternary polymerization of acidic IL was systematically investigated. Under optimal reaction conditions (molar ratio of monomers was D:V:[VBIM][Br] = 2:1:1, the most suitable cation chain length was C4), the synthesized MPD‐[C4V]‐[VBIM][SO3CF3] has a larger specific surface area (89.47 m2/g), large pore volume (0.29 cm3/g), and abundant mesopores and macropores, which help to improve the contact between the active site and reactants. Moreover, the catalyst could maintain a relatively high conversion of styrene (99.0%), 1,2‐diphenylethane yield (98.7%) and high thermostability under reaction and be easily be divided from the solution, which is critical for heterogeneous solid catalysts.  相似文献   

14.
A kind of amino‐functionalized ionic liquid has been prepared and investigated as ligand and base for the Heck reactions between aryl iodides and bromides with olefins in the presence of a catalytic amount of Pd submicron powder in [Bmim]PF6. The reactions generated the corresponding products in excellent yields under mild reaction conditions. The generality of this catalytic system to the different substrates also gave satisfactory results. The key feature of the reaction is that Pd species and ionic liquids were easily recovered and reused six times with constant activity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
A set of high‐molecular‐weight, new, side‐chain liquid‐crystalline polyethers was obtained by chemical modification of poly(epichlorohydrin) with potassium 3,4,5‐tris[4‐(n‐dodecan‐1‐yloxy)benzyloxy]benzoate. The degree of modification depended on the reaction conditions and ranged from 39 to 58%. The highest value was an apparent modification plateau. NMR characterization indicated no side reactions of any kind (e.g., deshydrohalogenation). All random‐grafted copolymers had hexagonal columnar mesophases with the exception of the least modified copolymer, which had a nematic columnar mesophase. X‐ray diffraction experiments performed on mechanically oriented samples showed that tapered groups were tilted with respect to the column axes. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 326–340, 2004  相似文献   

16.
This article describes a new, rapid and sensitive method for the determination of chlorotoluron, diethofencarb and chlorbenzuron from water samples with temperature‐controlled ionic liquid‐dispersive liquid‐phase microextraction. In the preconcentration procedure, ionic liquid 1‐hexyl‐3‐methylimidazolium hexafluorophosphate [C6MIM] [PF6] was employed as the extraction solvent. The parameters, such as volume of [C6MIM] [PF6], sample pH, extraction time, centrifuging time, temperature and salting‐out effect, were investigated in detail. Under the optimal extraction conditions, it has been found that three analytes had excellent LODs (S/N=3) in the range of 0.04–0.43 μg/L. The RSDs (n=6) were in the range of 1.3–4.7%. The proposed method was evaluated with lake water, tap water and melted snow water samples. The experimental results indicated that the proposed method had excellent prospect and would be widely used in the future.  相似文献   

17.
Double hydrophilic diblock copolymer, poly(N,N‐dimethylacrylamide)‐b‐poly(N‐isopropylacrylamide‐co‐3‐azidopropylacrylamide) (PDMA‐b‐P(NIPAM‐co‐AzPAM), containing azide moieties in one of the blocks was synthesized via consecutive reversible addition‐fragmentation chain transfer polymerization. The obtained diblock copolymer molecularly dissolves in aqueous solution at room temperature, and can further supramolecularly self‐assemble into core‐shell nanoparticles consisting of thermoresponsive P(NIPAM‐co‐AzPAM) cores and water‐soluble PDMA coronas above the lower critical solution temperature of P(NIPAM‐co‐AzPAM) block. As the micelle cores contain reactive azide residues, core crosslinking can be facilely achieved upon addition of difunctional propargyl ether via click chemistry. In an alternate approach in which the PDMA‐b‐P(NIPAM‐co‐AzPAM) diblock copolymer was dissolved in a common organic solvent (DMF), the core‐crosslinked (CCL) micelles can be fabricated via “click” crosslinking upon addition of propargyl ether and subsequent dialysis against water. CCL micelles prepared by the latter approach typically possess larger sizes and broader size distributions, compared with that obtained by the former one. In both cases, the obtained (CCL) micelles possess thermoresponsive cores, and the swelling/shrinking of which can be finely tuned with temperature, rendering them as excellent candidates as intelligent drug nanocarriers. Because of the high efficiency and quite mild conditions of click reactions, we expect that this strategy can be generalized for the structural fixation of other self‐assembled nanostructures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 860–871, 2008  相似文献   

18.
Liquid‐crystalline (LC) ionomers containing 2–15 mol % calcium ions were synthesized by the exchange reaction between the nematic LC copolymer, bearing oxycyanobiphenyl mesogenic groups, and the carboxyl groups of acrylic acid, with calcium acetate. The incorporation of 2–3 mol % Ca ions in the LC copolymer leads to some rise in the clearing point and glass‐transition temperature. A further increase in the concentration of metal ions (>5 mol %) is accompanied by induction of the smectic A phase where clearing point and glass‐transition temperatures keep constant values. Phase behavior of the LC ionomers may be understood on the basis of a structural model that considers the dual role of calcium ions in a polymer matrix. Metal ions act as points of noncovalent electrostatic binding of the polymer chains and are capable of forming larger ionic associates (multiplets). The comparison of the phase behavior of sodium and calcium containing LC ionomers shows that the formation of ionic links may lead to the growth of structure defects suppressing a positive influence of charged groups on the mesophase clearing temperature. The orientation behavior of the LC ionomers in the magnetic field was studied. It was shown that the incorporation of calcium ions (3 mol %) in the LC copolymer matrix leads to the growth of orientation order parameter S of the nematic phase. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3953–3959, 2001  相似文献   

19.
Considering that the determination of pyrethroid residues is of value for the safety of food, a new poly(ionic liquid)‐functionalized magnetic mesoporous nanoparticle was designed and used as an adsorbent in magnetic solid‐phase extraction for the enrichment of eight pyrethroids. The porous structure and large surface area of the mesoporous silica shell endow the adsorbent with abundant binding sites. In contrast to the reported poly(ionic liquids) with only one kind of functional group in the cationic part, the new poly(ionic liquids) with mixed cyano and phenyl groups in cationic part matched the chemical structure of the analytes to improve extraction efficiency. Under the optimum conditions, an effective method was established for the determination of eight pyrethroids in apples. Adsorption equilibrium can be quickly reached in 1 min, greatly decreasing the extraction time. The linearity range was found to be 10–200 ng/g, and the detection limits ranged from 0.24 to 1.99 ng/g. Recoveries of analytes in apple samples ranged from 87.3 to 119.0%, with relative standard deviations varying in the range of 3–21.2% (intraday) and 0.3–15.2% (interday). The results indicate that the proposed method is a good candidate for pyrethroid residues in apple samples.  相似文献   

20.
This work focuses on the design, synthesis, and characterization of a series of mesogen‐jacketed liquid crystalline polymers (MJLCPs), poly(alkyl 4′‐(octyloxy)‐2‐vinylbiphenyl‐4‐carboxylate) (pVBP(m,8), m = 1, 2, 4, 6, 8, 10, 12). For the first time, we realized asymmetric substitutions in the mesogens of MJLCPs. The polymers obtained by conventional free radical polymerization were investigated in detail by a combination of various techniques, such as differential scanning calorimetry, wide‐angle X‐ray diffraction, and polarized light microscopy. Our results showed that all the polymers were thermally stable, and their glass transition temperatures decreased when m increased. The liquid crystalline (LC) phases that developed at high temperatures and disappeared at low temperatures were strongly dependent on the difference in lengths of alkyl groups on the 4 and 4′ substitution positions of the side‐chain biphenyl. While polymer pVBP(1,8) was not liquid crystalline, columnar liquid crystalline phases were observed for all other pVBP(m,8) (m = 2, 4, 6, 8, 10, 12) polymers. Polymer pVBP(8,8) showed a tetragonal columnar nematic liquid crystalline phase, and the other LC polymers exhibited columnar nematic phases. In additions, the smaller the difference in the lengths of the terminal alkyls, the easier the development of the liquid crystalline phase. Birefringence measurements showed that solution‐cast polymer films exhibited moderately high positive birefringence values, indicating potential applications as optical compensation films for liquid crystal displays. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号