首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nonisothermal crystallization kinetics of a luminescent conjugated polymer, poly(9,9‐dihexylfluorene‐altco‐2,5‐didecyloxy‐1,4‐phenylene) (PF6OC10) with three different molecular weights was investigated by differential scanning calorimetry under different cooling rates from the melt. With increasing molecular weight of PF6OC10, the temperature range of crystallization peak steadily became narrower and shifted to higher temperature region and the crystallization rate increased. It was found that the Ozawa method failed to describe the nonisothermal crystallization behavior of PF6OC10. Although the Avrami method did not effectively describe the nonisothermal crystallization kinetics of PF6OC10 for overall process, it was valid for describing the early stage of crystallization with an Avrami exponent n of about 3. The combined method proposed in our previous report was able to satisfactorily describe the nonisothermal crystallization behavior of PF6OC10. The crystallization activation energies determined by Kissinger, Takhor, and Augis‐Bennett models were comparable. The melting temperature of PF6OC10 increased with increasing molecular weight. For low‐molecular‐weight sample, PF6OC10 showed the characteristic of double melting phenomenon. The interval between the two melting peaks decreased with increasing molecular weight, and only one melting peak was observed for the high‐molecular‐weight sample. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 976–987, 2007  相似文献   

2.
The article deals with the melting and nonisothermal crystallization behavior of neat poly (phenylene sulphide) (PPS) and its composites with a thermotropic liquid crystalline polymer (TLCP)—Vectra A950, prepared by melt mixing and probed by differential scanning calorimetry. The various macrokinetic models namely, the Ozawa, the modified Avrami, the Tobin, and the Mo models were applied to describe the crystallization kinetics under nonisothermal conditions. The kinetic crystallizabilty of PPS/TLCP composites calculated using the approach of Ziabicki varies depending on these two composite composition‐induced effects. Similarly Mo model predicts that to obtain a higher degree of crystallizabilty for PPS/TLCP composites, a higher cooling rate should be used. The effective energy barrier based on the differential isoconversional method of Friedman is found to be an increasing function of relative degree of melt conversion. The effect is explained in terms of nucleation theory proposed by Wunderlich to crystallization of polymers. The Lauritzen–Hoffman parameters are estimated using G = 1/t0.5 effective activation energy equation proposed by Vyazovkin and Sbirrazzuoli. The Kg values estimated from latter equations are more comparable with values obtained using isothermal crystallization data than 1/t0.5 method. Furthermore, the kinetic analysis using this equation shows a regime transition from regime II to regime III for 100/00, 90/10, 80/20 PPS/TLCP composites, basically attributed to reduced mobility of PPS chains in composites. This regime II to III transition is accompanied by a morphological transition from defective spherulitic sheaf‐like structures to ordered sheaf‐like structures. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1070–1100, 2010  相似文献   

3.
The poly(p‐phenylene sulfide) (PPS) nonisothermal cold‐crystallization behavior was investigated in a wide heating rate range. The techniques employed were the usual Differential Scanning Calorimetry (DSC), and the less conventional FT‐IR spectroscopy and Energy Dispersive X‐ray Diffraction (EDXD). The low heating rates (Φ) explored by EDXD (0.1 K min?1) and FT‐IR (0.5–10 K min?1) are contiguous and complementary to the DSC ones (5–30 K min?1). The crystallization temperature changes from 95 °C at Φ = 0.05 K min?1 to 130 °C at Φ = 30 K min?1. In such a wide temperature range the Kissinger model failed. The model is based on an Arrhenius temperature dependence of the crystallization rate and is widely employed to evaluate the activation energy of the crystallization process. The experimental results were satisfactorily fit by replacing in the Kissinger model the Arrhenius equation with the Vogel–Fulcher–Tamann function and fixing U* = 6.28 k J mol?1, the activation energy needed for the chains movements, according to Hoffmann. The temperature at which the polymer chains are motionless (T = 42 °C) was found by fitting the experimental data. It appears to be reasonable in the light of our previously reported isothermal crystallization results, which indicated T = 48 °C. Moreover, at the lower heating rate, mostly explored by FT‐IR, a secondary stepwise crystallization process was well evidenced. In first approximation, it contributes to about 17% of the crystallinity reached by the sample. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2725–2736, 2005  相似文献   

4.
The isothermal and nonisothermal crystallization kinetics of partially melted nylon‐1212 was investigated with differential scanning calorimetry. Because of partial melting, the pre‐existing crystals changed the crystallization mechanism and had a strong effect on the crystallization process. The Avrami exponent and interfacial free energy of the chain‐folded surface of partially melted nylon‐1212 were higher than those of completely melted nylon‐1212. The work of chain folding was determined to be 5.9 kcal/mol. The activation energy of the isothermal crystallization process was determined to be 399.1 kJ/mol, far higher than that of complete melting. The crystallization rate coefficient and Jeziorny analysis indicated that the ability of nonisothermal crystallization for partially melted nylon‐1212 was enhanced. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3222–3230, 2005  相似文献   

5.
The crystallization kinetics of the high‐flow nylon 6 containing polyamidoamine (PAMAM) dendrimers units in nylon 6 matrix was investigated by differential scanning calorimetry. The Ozawa and Mo equations were used to describe the crystallization kinetics under nonisothermal condition. The values of Avrami exponent m and the cooling crystallization function F(T) were determined from the Ozawa plots, which showed bad linearity, and were divided into three sections depending on different cooling rates. The plots of the m and log F(T) values versus crystallization temperatures were obtained, which indicated that the actual crystallization mechanisms might change with the crystallization temperatures. The high‐flow nylon 6 has higher values of m and log F(T) than those of pure nylon 6, which implied that the high‐flow nylon 6 had more complicated crystallization mechanisms and slower crystallization rate than those of pure nylon 6. The good linearity of the Mo plots verified the success of this combined approach. The activation energies of the high‐flow nylon 6 ranged from 157 to 174 kJ/mol, which were determined by the Kissinger method. The ΔE values were lower than those of pure nylon 6, and the ΔE values were affected by both the generation and the content of PAMAM units in the nylon 6 matrix. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2201–2211, 2008  相似文献   

6.
The miscibility and the isothermal crystallization kinetics for PBT/Epoxy blends have been studied by using differential scanning calorimetry, and several kinetic analyses have been used to describe the crystallization process. The Avrami exponents n were obtained for PBT/Epoxy blends. An addition of small amount of epoxy resin (3%) leads to an increase in the number of effective nuclei, thus resulting in an increase in crystallization rate and a stronger trend of instantaneous three‐dimensional growth. For isothermal crystallization, crystallization parameter analysis showed that epoxy particles could act as effective nucleating agents, accelerating the crystallization of PBT component in the PBT/Epoxy blends. The Lauritzen–Hoffman equation for DSC isothermal crystallization data revealed that PBT/Epoxy 97/3 had lower nucleation constant Kg than 100/0, 93/7, and 90/10 PBT/Epoxy blends. Analysis of the crystallization data of PBT/Epoxy blends showed that crystallization occurs in regime II. The fold surface free energy, σe = 101.7–58.0 × 10?3 J/m2, and work of chain folding, q = 5.79–3.30 kcal/mol, were determined. The equilibrium melting point depressions of PBT/Epoxy blends were observed and the Flory–Huggins interaction parameters were obtained. It indicated that these blends were thermodynamically miscible in the melt. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1320–1330, 2006  相似文献   

7.
PCL was blended with pristine multiwalled carbon nanotubes (MWCNT) and with a nanohybrid obtained from the same MWCNT but grafted with low molecular weight PCL, employing concentrations of 0.25 to 5 wt % of MWCNT and MWCNT‐g‐PCL. Excellent CNT dispersion was found in all samples leading to supernucleation of both nanofiller types. Nanohybrids with 1 wt % or less MWCNTs crystallize faster than nanocomposites (due to supernucleation), while the trend eventually reverses at higher nanotubes content (because of plasticization). Rheological results show that yield‐like behavior develops in both nanocomposites, even for the minimum content of carbon nanotubes. In addition, the MWCNT‐g‐PCL family, when compared with the neat polymer, exhibits lower values of viscosity and modulus in oscillatory shear, and higher compliance in creep. These rheological differences are discussed in terms of the plasticization effect caused by the existence of low molecular weight free and grafted PCL chains in the nanohybrids. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1310–1325  相似文献   

8.
In this work, crystallization and melting behavior of metallocene ethylene/α‐olefin copolymers were investigated by differential scanning calorimetry (DSC) and atomic force microscopy (AFM). The results indicated that the crystallization and melting temperatures for all the samples were directly related to the long ethylene sequences instead of the average sequence length (ASL), whereas the crystallization enthalpy and crystallinity were directly related to ASL, that is, both parameters decreased with a decreasing ASL. Multiple melting peaks were analyzed by thermal analysis. Three phenomena contributed to the multiple melting behaviors after isothermal crystallization, that is, the melting of crystals formed during quenching, the melting‐recrystallization process, and the coexistence of different crystal morphologies. Two types of crystal morphologies could coexist in samples having a high comonomer content after isothermal crystallization. They were the chain‐folded lamellae formed by long ethylene sequences and the bundlelike crystals formed by short ethylene sequences. The coexistence phenomenon was further proved by the AFM morphological observation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 822–830, 2002  相似文献   

9.
In this work, semi‐interpenetrating gels of poly(N‐isopropyl acrylamide) and methylcellulose were successfully synthesized by using the Frontal Polymerization (FP) technique. The gels were obtained in the presence of dimethyl sulfoxide and trihexyltetradecylphosphonium persulfate, as polymerization solvent and radical initiator, respectively, hence avoiding the formation of bubbles during polymerization. Then, some of the gels containing dimethyl sulfoxide were thoroughly washed with water, hence obtaining the corresponding hydrogels. The effects of the ratio between poly(N‐isopropyl acrylamide) and methylcellulose, the amount of crosslinker and solvent medium (i.e., dimethyl sulfoxide and water) were thoroughly studied, assessing the influence of temperature and velocity of FP fronts on the glass transition temperature values (dried samples), on the swelling behavior and on the dynamic‐mechanical properties (gels swollen both in water and dimethyl sulfoxide). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 437–443  相似文献   

10.
The miscibility and hydrogen‐bonding interactions of carbon dioxide and epoxy propane copolymer to poly(propylene carbonate) (PPC)/poly(p‐vinylphenol) (PVPh) blends were investigated with differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy and X‐ray photoelectron spectroscopy (XPS). The single glass‐transition temperature for each composition showed miscibility over the entire composition range. FTIR indicates the presence of strong hydrogen‐bonding interassociation between the hydroxyl groups of PVPh and the oxygen functional groups of PPC as a function of composition and temperature. XPS results testify to intermolecular hydrogen‐bonding interactions between the oxygen atoms of carbon–oxygen single bonds and carbon–oxygen double bonds in carbonate groups of PPC and the hydroxyl groups of PVPh by the shift of C1s peaks and the evolution of three novel O1s peaks in the blends, which supports the suggestion from FTIR analyses. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1957–1964, 2002  相似文献   

11.
Isothermal and nonisothermal crystallization kinetics of nylon‐46 were investigated with differential scanning calorimetry. The equilibrium melting enthalpy and the equilibrium melting temperature of nylon‐46 were determined to be 155.58 J/g and 307.10 °C, respectively. The isothermal crystallization process was described by the Avrami equation. The lateral surface free energy and the end surface free energy of nylon‐46 were calculated to be 8.28 and 138.54 erg/cm2, respectively. The work of chain folding was determined to be 7.12 kcal/mol. The activation energies were determined to be 568.25 and 337.80 kJ/mol for isothermal and nonisothermal crystallization, respectively. A convenient method was applied to describe the nonisothermal crystallization kinetics of nylon‐46 by a combination of the Avrami and Ozawa equations. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1784–1793, 2002  相似文献   

12.
13.
Crystalline thermosetting blends composed of 2,2′‐bis[4‐(4‐aminophenoxy)phenyl]propane (BAPP)‐cured epoxy resin (ER) and poly(?‐caprolactone) (PCL) were prepared via the in situ curing reaction of epoxy monomers in the presence of PCL, which started from initially homogeneous mixtures of diglycidyl ether of bisphenol A (DGEBA), BAPP, and PCL. The miscibility of the blends after and before the curing reaction was established with differential scanning calorimetry and dynamic mechanical analysis. Single and composition‐dependent glass‐transition temperatures (Tg's) were observed in the entire blend composition after and before the crosslinking reaction. The experimental Tg's were in good agreement with the prediction by the Fox and Gordon–Taylor equations. The curing reaction caused a considerable increase in the overall crystallization rate and dramatically influenced the mechanism of nucleation and the growth of the PCL crystals. The equilibrium melting point depression was observed for the blends. An analysis of the kinetic data according to the Hoffman–Lauritzen crystallization kinetic theory showed that with an increasing amorphous content, the surface energy of the extremity surfaces increased dramatically for DGEBA/PCL blends but decreased for ER/PCL blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1085–1098, 2003  相似文献   

14.
The dynamic mechanical behavior of uncrosslinked (thermoplastic) and crosslinked (thermosetting) acrylonitrile butadiene rubber/poly(ethylene‐co‐vinyl acetate) (NBR/EVA) blends was studied with reference to the effect of blend ratio, crosslinking systems, frequency, and temperature. Different crosslinked systems were prepared using peroxide (DCP), sulfur, and mixed crosslink systems. The glass‐transition behavior of the blends was affected by the blend ratio, the nature of crosslinking, and frequency. sThe damping properties of the blends increased with NBR content. The variations in tan δmax were in accordance with morphology changes in the blends. From tan δ values of peroxide‐cured NBR, EVA, and blends the crosslinking effect of DCP was more predominant in NBR. The morphology of the uncrosslinked blends was examined using scanning electron and optical microscopes. Cocontinuous morphology was observed between 40 and 60 wt % of NBR. The particle size distribution curve of the blends was also drawn. The Arrhenius relationship was used to calculate the activation energy for the glass transition of the blends, and it decreased with an increase in the NBR content. Various theoretical models were used to predict the modulus of the blends. From wide‐angle X‐ray scattering studies, the degree of crystallinity of the blends decreased with an increasing NBR content. The thermal behavior of the uncrosslinked and crosslinked systems of NBR/EVA blends was analyzed using a differential scanning calorimeter. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1556–1570, 2002  相似文献   

15.
Copolyester was synthesized and characterized as having 89.9 mol % ethylene succinate units and 10.1 mol % butylene succinate units in a random sequence, as revealed by NMR. Isothermal crystallization kinetics was studied in the temperature range (Tc) from 30 to 73 °C using differential scanning calorimetry (DSC). The melting behavior after isothermal crystallization was investigated using DSC by varying the Tc, the heating rate and the crystallization time. DSC curves showed triple melting peaks. The melting behavior indicates that the upper melting peaks are associated primarily with the melting of lamellar crystals with various stabilities. As the Tc increases, the contribution of recrystallization slowly decreases and finally disappears. A Hoffman‐Weeks linear plot gives an equilibrium melting temperature of 107.0 °C. The spherulite growth of this copolyester from 80 to 20 °C at a cooling rate of 2 or 4 °C/min was monitored and recorded using an optical microscope equipped with a CCD camera. Continuous growth rates between melting and glass transition temperatures can be obtained after curve‐fitting procedures. These data fit well with those data points measured in the isothermal experiments. These data were analyzed with the Hoffman and Lauritzen theory. A regime II → III transition was detected at around 52 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2431–2442, 2008  相似文献   

16.
Isothermal crystallization of poly(tetramethylene ether glycol) (PTMEG) with relatively low molecular weight (Mn = 991, 2004 and 2864, respectively) was investigated by differential scanning calorimetry, and the equilibrium melting temperature (T) determined using the Hoffman–Weeks analysis. The crystallization kinetics of PTMEG were characterized using an Avrami analysis. Mechanistic n values ranged from 2.2 to 2.9 for the primary crystallization process for three molecular weight grades, indicating heterogeneous nucleation of spherulites. Polarized light microscopy confirmed that PTMEG crystallized by the growth of spherulites from heterogeneous nuclei. The half–life for crystallization (t1/2) and the composite rate constant were found to be dependent on the degree of supercooling (ΔT) and the molecular weight. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Non‐isothermal ultra‐fast cooling crystallization tests were conducted on three blown film grade bimodal high density polyethylene (HDPE) resins using a fast differential scanning calorimeter, the Flash DSC. Non‐isothermal tests were performed at cooling rates between 50 and 4000°K/s, and the data were analyzed using the modified Avrami model by Jeziorny (Polymer, 1978 , 19, 1142). Non‐isothermal data were used to propose a new method named crystallization–time–temperature–superposition, and the two activation energies were obtained for each of the resins. This is very useful for obtaining theoretical crystallization kinetics data at different cooling rates, allowing its use in ultra‐fast cooling polymer processes such as blown film. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1822–1827  相似文献   

18.
The effect of CO2 on the nonisothermal crystallization of isotactic polypropylene (iPP) was studied with high‐pressure differential scanning calorimetry at cooling rates of 0.2–5 °C/min. CO2 significantly delayed the melt crystallization of iPP, and both the crystallization temperature and the heat of crystallization decreased with increasing CO2 pressure. The crystallization rate of iPP, as characterized by the half‐time, was also prolonged by the presence of CO2. With a modified Ozawa model developed by Seo, the Avrami crystallization exponent n of iPP was calculated. This value was depressed by the addition of CO2 and was strongly dependent on the CO2 pressure at low cooling rates. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1518–1525, 2003  相似文献   

19.
The peculiar thermal behavior of four PTFE/PMMA (Polymethylmethacrylate) core–shell nanoparticle samples, marked DV2M1, DV2M2, DV2M4, and DV2M6, was studied by combined differential scanning calorimetry and thermogravimetric analysis. The melting process of the PTFE in the various samples, subjected to annealing and thermal treatments, does not change. In contrast, a complex fractionated crystallization‐type behavior for the PTFE component was observed. The nanocomposite produced by the PMMA shell fluidification features a perfect dispersion of the nanometric PTFE cores. In these conditions, only one crystallization exotherm at very high undercooling is observed, possibly deriving from the homogeneous nucleation mechanism. In contrast, when high temperature thermal treatments cause the decomposition with partial loss of the PMMA shell and allows some cores to get in contact and merge, a crystallization process structured into several components is observed. This behavior indicates that different nucleation mechanisms are active, possibly involving the participation of distinct types of active nuclei with distinct crystallization efficiencies. Finally, when the PMMA shell amount is substantially reduced by the thermal degradation, only the expected crystallization process at moderate undercooling (310 °C) is observed, corresponding to the bulk crystallization induced by the most efficient heterogeneous nuclei. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 548–554, 2010  相似文献   

20.
The nonisothermal crystallization kinetics was investigated by differential scanning calorimetry for the nylon 6/graphene composites prepared by in situ polymerization. The Avrami theory modified by Jeziorny, Ozawa equation, and Mo equation was used to describe the nonisothermal crystallization kinetics. The analysis based on the Avrami theory modified by Jeziorny shows that, at lower cooling rates (at 5, 10, and 20 K/min), the nylon 6/graphene composites have lower crystallization rate than pure nylon 6. However, at higher cooling rates (at 40 K/min), the nylon 6/graphene composites have higher crystallization rate than pure nylon 6. The values of Avrami exponent m and the cooling crystallization function F(T) from Ozawa plots indicate that the mode of the nucleation and growth at initial stage of the nonisothermal crystallization may be as follows: two‐dimensional (2D), then one‐dimensional (1D) for all samples at 5–10 °C/min; three‐dimensional (3D) or complicated than 3D, then 2D and 1D at 10–20 and 20–40 °C/min. The good linearity of the Mo plots indicated that the combined approach could successfully describe the crystallization processes of the nylon 6 and nylon 6/graphene composites. The activation energies (ΔE) of the nylon 6/graphene composites, determined by Kissinger method, were lower than those of pure nylon 6. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1381–1388, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号