首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonaqueous synthesis of nanosilica in diglycidyl ether of bisphenol‐A epoxy (DGEBA) resin has been successfully achieved in this study by reacting tetraethoxysilane (TEOS) directly with DGEBA epoxy matrix, at 80 °C for 4 h under the catalysis of boron trifluoride monoethylamine (BF3MEA). BF3MEA was proved to be an effective catalyst for the formation of nanosilica in DGEBA epoxy under thermal heating process. FTIR and 29Si NMR spectra have been used to characterize the structures of nanosilica obtained from this direct thermal synthetic process. The morphology of the nanosilica synthesized in epoxy matrix has also been analyzed by TEM and SEM studies. The effects of both the concentration of BF3MEA catalyst and amount of TEOS on the diameters of nanosilica in the DGEBA epoxy resin have been discussed in this study. From the DSC analysis, it was found that the nanosilica containing epoxy exhibited the same curing profile as pure epoxy resin, during the curing reaction with 4,4′‐diaminodiphenysulfone (DDS). The thermal‐cured epoxy–nanosilica composites from 40% of TEOS exhibited high glass transition temperature of 221 °C, which was almost 50 °C higher than that of pure DGEBA–DDS–BF3MEA‐cured resin network. Almost 60 °C increase in thermal degradation temperature has been observed during the TGA of the DDS‐cured epoxy–nanosilica composites containing 40% of TEOS. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 757–768, 2006  相似文献   

2.
3‐Phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine ( m 1 ) underwent cationic ring opening polymerization using BF3·OEt2 in alcoholic solution under mild conditions. The polymerization of m 1 proceeds through an intermediate hemiaminal ether leading mainly to the formation of polybenzoxazines with diphenylmethane bridges, and not only the classical Mannich‐type ones. During the first stages of the reaction, low‐molecular weight soluble oligomers containing benzoxazine rings are formed. At longer polymerization times, the propagation proceeds conventionally through the phenolic active sites. This polymerization mechanism is extensible to other substituted 3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazines but fails in the case of 3‐alkyl‐3,4‐dihydro‐2H‐1,3‐benzoxazines or when the phenyl group in Position 3 have a substituent in the p‐position. Spectroscopic studies and kinetic experiments using model reactions and deuterium labeled benzoxazines, allow proposing a plausible different polymerization mechanism. These soluble benzoxazine‐containing polymers can be conveniently processed and impregnated on appropriate substrates before underwent crosslinking producing materials with comparable properties to those of conventional bis‐benzoxazines. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5075–5084  相似文献   

3.
1,3‐benzoxazine 1 , bearing 4‐pyridyl moiety on the nitrogen atom, was synthesized from p‐cresol, 4‐aminopyridine, and paraformaldehyde. The efficient synthesis was achieved by adding acetic acid to suppress the strong basicity caused by the presence of 4‐aminopyridine derivatives. Upon heating 1 at 180 °C, it underwent the thermally induced ring‐opening polymerization. The resulting polymer was composed of two types of repeating unit, i.e., (1) Mannich‐type one (‐phenol‐CH2‐NR‐CH2‐) that can be expected from the general ring‐opening polymerization of conventional benzoxazines and (2) a typical phenolic resin‐type one (‐phenol‐CH2‐phenol‐) induced by release of 4‐aminopyridine and paraformaldehyde (unit B). Another structural feature of the polymer was that it possessed a benzoxazine moiety at the chain end. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 410–416  相似文献   

4.
Tryptophan, an amino acid, has been used as a novel, environmentally friendly curing agent instead of toxic curing agents to crosslink the diglycidyl ether of bisphenol A (DGEBA) epoxy resin. The curing reaction of tryptophan/DGEBA mixtures of different ratios and the effect of the imidazole catalyst on the reaction have been evaluated. The optimum reaction ratio of DGEBA to tryptophan has been determined to be 3:1 with 1 wt % catalyst, and the curing mechanism of the novel reaction system has been studied and elucidated. In situ Fourier transform infrared spectra indicate that with the extraction of a hydrogen from NH3+ in zwitterions from tryptophan, the formed nucleophilic primary amine and carboxylate anions of the tryptophan can readily participate in the ring‐opening reaction with epoxy. The secondary amine, formed from the primary amine, can further participate in the ring‐opening reaction with epoxy and form the crosslinked network. The crosslinked structure exhibits a reasonably high glass‐transition temperature and thermal stability. A catalyst‐initiated chain reaction mechanism is proposed for the curing reaction of the epoxy with zwitterion amino acid hardeners. The replacement of toxic curing agents with this novel, environmentally friendly curing agent is an important step toward a next‐generation green electronics industry. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 181–190, 2007  相似文献   

5.
BF3·OEt2-initiated polymerizations of 2-methylene-1,3-dioxepane gave polymers composed of both ring-retained and ring-opened structures. The ring-opening content increased with an increase in polymerization temperature. Poly(4,7-dimethyl-2-methylene-1,3-dioxepane) propagated slower during BF3·OEt2-initiated polymerization and had a lower ring-opened content than poly(2-methylene-1,3-dioxepane). The type of acid initiator used also affected the amount of ring opening observed. Stronger acids gave less ring opening. Attempted BF3·OEt2-initiated copolymerizations of these seven-membered ring cyclic ketene acetals with isobutyl vinyl ether at room temperature resulted in formation of the two homopolymers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 873–881, 1998  相似文献   

6.
Cationic ring‐opening polymerization of ϵ‐thionocaprolactone was examined. The corresponding polythioester with the number‐average molecular weight (Mn ) of 57,000 was obtained in the polymerization with 1 mol % of BF3 · OEt2 as an initiator in CH2Cl2 at 28 °C for 5 h with quantitative monomer conversion. The Mn of the polymer increased with the solvent polarity and monomer‐to‐initiator ratio. No polymerization took place below −30 °C, and the monomer conversion and Mn of the polymer increased with the temperature in the range of −15 to 28 °C. The increase of initial monomer concentration was effective to improve the monomer conversion and the Mn of the obtained polymer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4057–4061, 2000  相似文献   

7.
For the convenient synthesis of (1→6)‐α‐D ‐glucopyranan, i. e., dextran ( 4 ), ring‐opening polymerization of 1,6‐anhydro‐2,3,4‐tri‐O‐allyl‐β‐D ‐glucopyranose ( 1 ) has been carried out using BF3·OEt2. With a ratio of [BF3·OEt2]/[ 1 ] = 0.5 at 0 °C for 140 h, the yield and Mn of the obtained polymer are 84.0% and 21 700, respectively. The polymer consists of (1→6)‐α‐linked 2,3,4‐tri‐O‐allyl‐D ‐glucopyranose ( 2 ) which is similar to the results for the cationic ring‐opening polymerization of 1,6‐anhydro‐2,3,4‐tri‐O‐methyl‐β‐D ‐glucopyranose and 1,6‐anhydro‐2,3,4‐tri‐O‐ethyl‐β‐D ‐glucopyranose. Polymer 2 was isomerized using tris(triphenylphosphine)‐chlororhodium as the catalyst in toluene/ethanol/water to yield polymeric 2,3,4‐tri‐O‐propenyl‐(1→6)‐α‐D ‐glucopyranan ( 3 ). Deprotection of the propenyl ether linkage of 3 was then performed using hydrochloric acid in acetone to give 4 .  相似文献   

8.
A novel organosoluble polynorbornene bearing a polar, pendant, ester‐bridged epoxy group [poly(oxiran‐2‐ylmethyl 2‐methylbicyclo[2.2.1]hept‐5‐ene‐2‐carboxylate) (polyOMMC)] was prepared via the living ring‐opening metathesis polymerization (ROMP) of active norbornenes with a Ru catalyst. PolyOMMC exhibited excellent solubility in a variety of solvents. The number‐average molecular weight of polyOMMC linearly increased with the [M]/[I] ratio (where [M] is the monomer concentration and [I] is the initiator concentration), and a narrow polydispersity of 1.09–1.19 was observed; this was considered a living polymerization. When ROMP of oxiran‐2‐ylmethyl 2‐methylbicyclo[2.2.1]hept‐5‐ene‐2‐carboxylate with [M]/[I] = 350 was carried out at 30 °C in CH2Cl2, the number‐average molecular weight (7.01 × 104; polydispersity index = 1.07) was close to the calculated molecular weight (7.28 × 104), and a diblock copolymer was observed after the addition of another monomer ([M]/[I] = 350) with an increase in the number‐average molecular weight (1.60 × 105; polydispersity index = 1.11), which was close to the calculated molecular weight (1.61 × 105). The modified polynorbornenes retained good solubility in methylene chloride, tetrahydrofuran, dimethyl sulfoxide, dimethylformamide, N,N‐dimethylacetamide, and N‐methyl‐2‐pyrrdione. High‐performance polynorbornenes with active epoxy groups could be designed with great potential for applications in photoresists, UV curing, and elastomers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4428–4434, 2006  相似文献   

9.
Poly(L ‐lactic acid) (PLLA) is generally produced by ring‐opening polymerization of (S,S)‐lactide, which is prepared from dehydration polycondensation of lactic acid and successive depolymerization. Results of this study show that scandium trifluoromethanesulfonate [Sc(OTf)3] and scandium trifluoromethanesulfonimide [Sc(NTf2)3] are effective for one‐step dehydration polycondensation of L ‐lactic acid. Bulk polycondensation of L ‐lactic acid was carried out at 130–170 °C to give PLLA with Mn of 5.1 × 104 to 7.3 × 104 (yield 32–60%). The solution polycondensation was performed at 135 °C for 48 h to afford PLLA with Mn of 1.1 × 104 with good yield (90%). In no case did 1H NMR, specific optical rotation, or DSC measurement confirm racemizations. The catalyst was recovered easily by extraction with water and reused for polycondensation. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5247–5253, 2006  相似文献   

10.
Several polycondensations of ethylene carbonate with succinic anhydride or glutaric anhydride (GA) were conducted in bulk. Low molar mass polyesters were obtained with pyridine‐type catalysts and GA. Analogous polycondensations of trimethylene carbonate (TMC) and GA were successful when quinoline, 4‐(N,N‐dimethylamino)pyridine, or BF3 · OEt2 was used as a catalyst. Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectra revealed the formation of cyclic oligoesters and polyesters by backbiting degradation. Monomer mixtures containing an excess of TMC yielded copoly(ester carbonate)s with number‐average molecular weights up to 16,000 Da. Analogous copoly(ester carbonate)s were obtained from TMC and 3,3′‐tetramethylene glutaric anhydride. Furthermore, combined polycondensation/ring‐opening polymerization reactions of TMC and GA with L ‐lactide or ?‐caprolactone were studied. All copolymers were characterized by viscosity measurements and by IR, 1H, and 13C NMR spectroscopy. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4357–4367, 2002  相似文献   

11.
Thiophenol and p‐nitrothiophenol were evaluated as promoters for the ring opening polymerization of benzoxazine. The ring‐opening polymerization of p‐cresol type monofunctional N‐phenyl benzoxazine 1a with 10 mol % of thiophenols proceeded at 150 °C, leading to the high conversion of 1a more than 95% within 5 h, whereas the polymerization of 1a without thiophenols did not proceed under the same conditions. The promotion effect of the thiophenols on curing of bisphenol‐A type N‐phenyl benzoxazine 1b was also investigated. In the differential scanning calorimetric (DSC) analysis of the polymerization of 1b at 150 °C without using any promoters, an exothermic peak attributable to the ring‐opening reaction of benzoxazine was observed after 8 h. In contrast, in the DSC analysis of the polymerization of 1b with addition 20 mol % of p‐nitrothiophenol, an exothermic peak was observed within 2 h, to clarify the significant promoting effect of p‐nitrothiophenol. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2523–2527  相似文献   

12.
Acetylacetonato (acac) complexes of transition metals in the 4th period were examined as catalysts for the ring‐opening polymerization of benzoxazine. This examination revealed that acac complexes of manganese, iron, and cobalt exhibited the highest activity, which was comparable or slightly higher than that exhibited by p‐toluenesulfonic acid. By replacing acac ligand by hexafluoroacetylacetonato (F6‐acac) ligand, the activity of manganese and iron complexes was remarkably enhanced. These metal F6‐acac complexes were tolerant to moisture to allow their use under air without special caution. Another advantage was their negligible effect to promote unfavorable weight loss during the polymerization. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 479–484, 2010  相似文献   

13.
1,3‐Benzoxazine monomers having ammonium salt of carboxylic acid have been developed. These 1,3‐benzoxazines 1a and 1b were easily synthesized from the corresponding tetrabutylammonium salts of glycine and β‐alanine, respectively. The glycine‐derived benzoxazine 1a exhibited remarkably high reactivity, which allowed its thermally induced ring‐opening polymerization in bulk at 100 °C, at which N‐methyl‐1,3‐benzoxazine 1d did not undergo the polymerization at all. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Novel side‐chain benzoxazine functional polyvinylchloride (PVC‐Benzoxazine) was synthesized by using “Click Chemistry” strategy. First, approximately 10% of chloro groups of PVC were converted to azido groups by using NaN3 in N,N‐dimethylformamide. Propargyl benzoxazine was prepared independently by a ring closure reaction between p‐propargyloxy aniline, paraformaldehyde, and phenol. Finally, azidofunctionalized PVC was coupled to propargyl benzoxazine with high efficiency by click chemistry. The spectral and thermal analysis confirmed the presence of benzoxazine functionality in the resulting polymer. It is shown that PVC containing benzoxazine undergoes thermally activated curing in the absence of any catalyst forming PVC thermoset with high thermal stability. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3512–3518, 2008  相似文献   

15.
A polyaddition system consisted of a bifunctional Nn‐propyl benzoxazine and 2‐methylresorcinol ( MR ) that proceeds at ambient temperature has been developed. In this system, the aromatic ring of MR acted as a bifunctional monomer, reacting with a two equivalent amount of benzoxazine moieties via their ring‐opening reaction. The polyaddition gave the corresponding linear polymer bearing phenolic moieties bridged by Mannich‐type linkage in the main chain. The linear polymer had a high glass transition temperature, which was comparable to that of the linear polybenzoxazine synthesized by the ring‐opening polymerization of a monofunctional Nn‐propyl benzoxazine. The employment of a bifunctional N‐allyl benzoxazine in the polyaddition system resulted in the formation of the corresponding polymer with allyl pendants, which exhibited improved heat resistance due to its thermally induced crosslinking reaction. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3867–3872  相似文献   

16.
Polymerization of a silacyclobutane having an epoxy moiety and its application to networked polymer synthesis were examined. Four‐membered ring‐opening polymerization of silacyclobutane having a 3,4‐epoxybutyl group on the silicon atom (OBMSB) was achieved by using a platinum vinyldisiloxane complex with keeping the epoxy ring unchanged. Copolymerization of 1,1‐diethylsilacyclobutane (DESB) with OBMSB by using the same catalyst effectively gave the corresponding copolymers [poly(DESB‐co‐OBMSB)]. Thermal properties of the polyOBMSB, polyDESB, and poly(DESB‐co‐OBMSB) were investigated by DSC and TGA. Cast films of the obtained polymers with 1‐naphthylmethylmethyl‐p‐hydroxyphenylsulfonium hexafluoroantimonate, a small amount of thermally latent acid generator were prepared. Heating the films at 80 °C for 2 h gave crosslinked networked polycarbosilanes through cationic ring‐opening of the epoxy moieties. Thermal and mechanical properties of the networked polymers were investigated by TGA, DSC, and tensile strength measurements. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3400–3405  相似文献   

17.
The cocuring behaviors of 3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine (P‐ABz) and various N‐phenylmaleimide compounds were studied with DSC, FTIR, and TGA‐GC/MS. The presence of benzoxazine compound promoted the polymerization of maleimide groups. In contrast, 4‐hydroxyphenylmaleimide (MI‐OH) and 4‐maleimidobenzoic acid (MI‐COOH), which possess acidic moieties, showed an acid‐catalytic effect on the polymerization of benzoxazine groups. The cocuring composition of P‐ABz/MI‐COOH showed low polymerization temperatures, high glass transition temperature above 220 °C, and comparable thermal stability to conventional polybenzoxazines. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1890–1899, 2006  相似文献   

18.
This work deals with the synthesis and cationic ring‐opening polymerization behavior of a novel five‐membered cyclic thiocarbonate bearing a spiro‐linked adamantane moiety, tricyclo[3.3.1.13,7]decane‐2‐spiro‐4′‐(1′,3′‐dioxolane‐2′‐thione) ( TC2 ). The cationic ring‐opening polymerization of TC2 did not proceed with trifluoromethanesulfonic acid, methyl trifluoromethanesulfonate, triethyloxonium tetrafluoroborate (Et3OBF4), boron trifluoride etherate (BF3OEt2), titanium tetrachloride, or methyl iodide as the initiator, presumably because of the steric hindrance of the adamantane moiety. However, the cationic ring‐opening copolymerization of TC2 with five‐ or six‐membered cyclic thiocarbonates, that is, 1,3‐dioxolane‐2‐thione, 1,3‐dioxane‐2‐thione, 5‐methyl‐1,3‐dioxane‐2‐thione, or 5,5‐dimethyl‐1,3‐dioxane‐2‐thione, initiated by BF3OEt2 or Et3OBF4, proceeded to afford the corresponding copolymer via a selective ring‐opening direction. The increase in the feed ratio of TC2 in the copolymerization increased the unit ratio derived from TC2 in the copolymer; however, the molecular weight of the copolymer decreased. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 699–707, 2003  相似文献   

19.
Epoxy–novolac resins were synthesized by modifying a commercial novolac resin with epichlorohydrin. These epoxy–novolac resins were characterized and further modified with different contents of bis(benzo‐1,3,2‐dioxa‐borolanyl)oxide or bis(4,4,5,5‐tetramethyl‐1,3,2‐dioxa‐borolanyl)oxide. The boron‐containing epoxy–novolac resins were autocatalytically crosslinked or crosslinked with BF3MEA and their thermal stability and flame retardancy were determined by thermogravimetric analysis and limiting oxygen index (LOI) values. These LOI values for the bis(benzo‐1,3,2‐dioxa‐borolanyl)oxide derivatives were higher than the boron‐free novolac resins, which shows the benefit of the presence of boron. To test the role of boron in the enhancement of flammability, scanning electronic microscopy and energy‐dispersive X‐ray spectroscopy images were made. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6332–6344, 2006  相似文献   

20.
Microwave‐assisted ring‐opening polymerization (MROP) of trimethylene carbonate in the presence of 1‐n‐butyl‐3‐methylimidazolium tetrafluoroborate ([bmim]BF4) ionic liquid was investigated. In the presence of 5 wt % [bmim]BF4, poly (trimethylene carbonate) (PTMC) with a number‐average molar mass (Mn) of 36,400 g/mol was obtained at 5 W for only 60 min. The Mn of PTMC synthesized in the presence of [bmim]BF4 was much higher than that produced in bulk at the same reaction time. In addition, compared with those produced by conventional heating, the Mn of PTMC and monomer conversion by MROP with or without [bmim]BF4 were both higher. Thermal properties of the resulting PTMC were characterized by differential scanning calorimetry. Under microwave irradiation in the presence of ionic liquid, the polymerization could be carried out efficiently and effectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5857–5863, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号