首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(siloxane‐urethane) crosslinked structures were prepared from isophorone diisocyanate, α,ω‐bis(hydroxybutyl)oligodimethylsiloxane and a new hybrid diol containing hydrolysable Si? OC2H5 groups besides OH groups. The latest was synthesized by the acid‐catalyzed reaction between 1,3‐bis(3‐glycidoxypropyl)tetramethyldisiloxane and 3‐aminopropyltriethoxysilane. The formations of the urethane groups along the polymer backbone as well as the formation of the silica domains were first confirmed by the presence of the specific bands in Fourier transform infrared spectra. The resulted materials were characterized using differential scanning calorimetry, thermogravimetric analysis and scanning electron microscopy. The results of the dynamic mechanical analysis (DMA) performed at various frequencies revealed shape memory capabilities for some of the obtained structures. The silica formed because of the hydrolysis‐condensation reactions proved to have reinforcing effect upon siloxane‐urethane structure also evidenced by DMA and increasing water vapor sorption capacity as was measured by dynamic vapor sorption. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
Thin films of crosslinked polymethylhydrosiloxane (PMHS) have been grafted on silica using the sol–gel process allowing further functionalization by effective quantitative hydrosilylation of SiH groups by olefins within the network. Postfunctionalization gives the polysiloxane network with n‐alkyl side chains. The PMHS coating was prepared by room temperature polycondensation of a mixture of methyldiethoxysilane HSiMe(OEt)2 monomer and triethoxysilane HSi(OEt)3 (TH) as crosslinker. The surface‐attached films are chemically stable and covalently bonded to the silica surface. Subsequently, films were functionalized without delamination. We showed by FTIR spectroscopy how the crosslinking ratio and the molecular size of the alkenes precursors influence the extent of the hydrosilylation reaction of SiH groups in the PMHS network. We have determined that quasi‐full olefin addition catalyzed by a platinum complex occurred within soft networks of less than 5% TH with 1‐alkenes CH2?CH(CH2)n‐2CH3 of various alkyl chain lengths (n = 5, 11, 17). Powders of PMHS gel were also modified with 1‐alkenes by hydrosilylation. The SiH groups within the soft gel (5% crosslinked) were fully functionalized as shown by 29Si and 1H solid‐state NMR. The structure of functionalized polysiloxane with n‐octadecyl and n‐dodecyl side chains was studied by FTIR, wide angle X‐ray diffraction, and DSC showing crystallization of the long n‐alkyl chains in the network. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3546–3562, 2008  相似文献   

3.
Poly(ε‐caprolactone) (PCL) with a pendent coumarin group was prepared by solution polycondensation from 7‐(3,5‐dicarboxyphenyl) carbonylmethoxycoumarin dichloride and α, ω‐dihydroxy terminated poly(ε‐caprolactone) with molecular weights of 1250, 3000, and 10,000 g/mol. These photosensitive polymers underwent a rapid reversible photocrosslinking upon exposure to irradiation with alternating wavelengths (>280/254 nm) without a photoinitiator. The thermal and mechanical properties of the photocrosslinked films were examined by means of differential scanning calorimetry and stress–strain measurements. The crosslinked films exhibited elastic properties above the melting temperature of the PCL segment along with significant decrease in the ultimate tensile strength and Young's modulus. Shape‐memory properties such as strain fixity ratio (Rf) and strain recovery ratio (Rr) were determined by means of a cyclic thermomechanical tensile experiments under varying maximum strains (εm = 100, 300, and 500%). The crosslinked ICM/PCL‐3000 and ‐10,000 films exhibited the excellent shape‐memory properties in which both Rf and Rr values were 88–100% for tensile strain of 100–500%; after the deformation, the films recovered their permanent shapes instantaneously. In vitro degradation was performed in a phosphate buffer saline (pH 7.2) at 37 °C with or without the presence of Pseudomonas cepacia lipase. The presence of the pendent coumarin group and the crosslinking of the polymers pronouncedly decreased the degradation rate. The crosslinked biodegradable PCL showing a good shape‐memory property is promising as a new material for biomedical applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2422–2433, 2009  相似文献   

4.
The syntheses and characterization of linear silarylene‐siloxane‐diacetylene polymers 3a–c and their thermal conversion to crosslinked elastomeric materials 4a–c are discussed. Inclusion of the diacetylene unit required synthesis of an appropriate monomeric species. 1,4‐Bis(dimethylaminodimethylsilyl)butadiyne [(CH3)2N? Si(CH3)2? C?C? C?C? (CH3)2Si? N(CH3)2] 2 was prepared from 1,4‐dilithio‐1,3‐butadiyne and 2 equiv of dimethylaminodimethylchlorosilane. The linear polymers were prepared via polycondensation of 2 with a series of disilanol prepolymers. The low molecular weight silarylene‐siloxane prepolymers 1a–c (terminated by hydroxyl groups) were synthesized via solution condensation of an excess amount of 1,4‐bis(hydroxydimethylsilyl)benzene with bis(dimethylamino)dimethylsilane. The linear polymers were characterized by 1H and 13C NMR, Fourier transform infrared spectroscopy, gel permeation chromatography, thermogravimetric analysis (TGA), and DSC. The elastomers exhibited long‐term oxidative stability up to 330 °C in air as determined by TGA. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 88–94, 2002  相似文献   

5.
Ti[O(CH2)4OCH?CH2]4, used for the ring‐opening polymerization (ROP) of ε‐caprolactone, was synthesized through the ester‐exchange reaction of titanium n‐propoxide and 1,4‐butanediol vinyl ether, and its chemical structure was confirmed by nuclear magnetic resonance (1H NMR) and thermogravimetric analysis (TGA). The mechanism and kinetics of Ti[O(CH2)4OCH?CH2]4‐initiated bulk polymerization of ε‐caprolactone were investigated. The results demonstrate that Ti[O (CH2)4OCH?CH2]4‐initiated polymerization of ε‐caprolactone proceeds through the coordination‐insertion mechanism, and all the four alkoxide arms in Ti[O (CH2)4OCH?CH2]4 share a similar activity in initiating ROP of ε‐caprolactone. The polymerization process can be well predicted by the obtained kinetic parameters, and the activation energy is 106 KJ/mol. Then, the rheological method was employed to investigate the feasibility of producing the crosslinked poly(ε‐caprolactone)‐poly (n‐butyl acrylate) network by using Ti[O(CH2)4OCH?CH2]4 as the ROP initiator. The tensile test demonstrates that the in situ generated crosslinked PCL‐PBA network in PMMA matrix provides the possibility of ameliorating the tensile properties of PMMA. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7773–7784, 2008  相似文献   

6.
The chloroiodomethyl chain ends of poly(vinyl chloride) (PVC) obtained by the single‐electron‐transfer/degenerative‐chain‐transfer mediated living radical polymerization of vinyl chloride initiated with iodoform were quantitatively functionalized by the reaction with 2‐allyloxyethanol (CH2?CHCH2OCH2CH2OH). This reaction was performed in dimethyl sulfoxide at 70 °C and was catalyzed by sodium dithionite/sodium bicarbonate. The resulting product is the first example of telechelic PVC [α,ω‐di(hydroxy)PVC]. A possible mechanism for this reaction was suggested. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1255–1260, 2005  相似文献   

7.
1‐[2′‐(Heptaphenylcyclotetrasiloxanyl)ethyl]‐1,3,3,5,5‐pentamethylcyclotetrasiloxane ( II ) was prepared from 1‐[2′‐(methyldichlorosilyl)ethyl]‐1,3,3,5,5,7,7‐heptaphenylcyclotetrasiloxane ( I ) and tetramethyldisiloxane‐1,3‐diol. Acid‐catalyzed ring‐opening of II in the presence of tetramethyldisiloxane gave 1,9‐dihydrido‐5‐[2′‐(heptaphenylcyclotetrasiloxanyl)ethyl]nonamethylpentasiloxane ( III ) and 1,9‐dihydrido‐3‐[2′‐(heptaphenylcyclotetrasiloxanyl)ethyl]nonamethylpentasiloxane ( IV ). Both acid‐ and base‐catalyzed ring‐opening polymerization of II gives highly viscous, transparent polymers. The structures of I – IV and polymers were determined by UV, IR, 1H, 13C, and 29Si NMR spectroscopy. In addition, molecular weights obtained by GPC and NMR end group analysis were confirmed with mass spectrometry. On the basis of 29Si NMR spectroscopy, the polymers appear to result exclusively from ring‐opening of the cyclotrisiloxane ring. No evidence for ring‐opening of the cyclotetrasiloxane ring was observed. Polymer properties were determined by DSC and TGA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 137–146, 2006  相似文献   

8.
Five new coumarin derivatives ( 5a , 5b , 5c , 5d , 5e ) with extending para‐bromophenyl at the 3‐position and substituted vinyl at the 7‐position were synthesized and characterized by FT‐IR, 1H NMR, and element analysis. The absorption and fluorescence characteristics of compounds 5a , 5b , 5c , 5d , 5e showed significant dependences on its molecular structure, which possessed large Stokes shifts (up to 8309 cm?1) and high fluorescence quantum yield (up to 0.80) in CH2Cl2. These advantageous spectral properties should allow use in many areas.  相似文献   

9.
Reaction of [Ru(η6p‐cymene)Cl2]2 with two equivalents of [Ph4P][Cl] in CH2Cl2 yields [Ph4P][Ru(η6p‐cymene)Cl3], containing a trichlororuthenate(II) anion. In solution, an equilibrium between the product and [Ru(η6p‐cymene)Cl2]2 is observed, which in CDCl3 is nearly completely shifted to the dimer, whereas in CD2Cl2 essentially a 1:1‐mixture of the two ruthenium species is present. Crystallization from CH2Cl2/pentane yielded two different crystals, which were identified by X‐ray analysis as [Ph4P][Ru(η6p‐cymene)Cl3] and [Ph4P][Ru(η6p‐cymene)Cl3]·CH2Cl2.  相似文献   

10.
A new synthetic strategy, the combination of living polymerization of ylides and ring‐opening polymerization (ROP), was successfully used to obtain well‐defined polymethylene‐b‐poly(ε‐caprolactone) (PM‐b‐PCL) diblock copolymers. Two hydroxyl‐terminated polymethylenes (PM‐OH, Mn= 1800 g mol?1 (PDI = 1.18) and Mn = 6400 g mol?1 (PDI = 1.14)) were prepared using living polymerization of dimethylsulfoxonium methylides. Then, such polymers were successfully transformed to PM‐b‐PCL diblock copolymers by using stannous octoate as a catalyst for ROP of ε‐caprolactone. The GPC traces and 1H NMR of PM‐b‐PCL diblock copolymers indicated the successful extension of PCL segment (Mn of PM‐b‐PCL = 5200–10,300 g mol?1; PDI = 1.06–1.13). The thermal properties of the double crystalline diblock copolymers were investigated by differential scanning calorimetry (DSC). The results indicated that the incorporation of crystalline segments of PCL chain effectively influence the crystalline process of PM segments. The low‐density polyethylene (LDPE)/PCL and LDPE/polycarbonate (PC) blends were prepared using PM‐b‐PCL as compatibilizer, respectively. The scanning electron microscopy (SEM) observation on the cryofractured surface of such blend polymers indicates that the PM‐b‐PCL diblock copolymers are effective compatibilizers for LDPE/PCL and LDPE/PC blends. Porous films were fabricated via the breath‐figure method using different concentration of PM‐b‐PCL diblock copolymers in CH2Cl2 under a static humid condition. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
A series of oligomeric, hydroxy‐terminated silarylene–siloxane prepolymers of various lengths were prepared via dehydrogenative coupling between 1,4‐bis(dimethylsilyl)benzene [H(CH3)2SiC6H4Si(CH3)2H] and excess 1,4‐bis(hydroxydimethylsilyl)benzene [HO(CH3)2SiC6H4Si(CH3)2OH] in the presence of a catalytic amount of Wilkinson's catalyst [(Ph3P)3RhCl]. Attempts to incorporate the diacetylene units via dehydrogenative coupling polymerization between 1,4‐bis(dimethylsilyl)butadiyne [H(CH3)2Si? C?C? C?C? Si(CH3)2H] and the hydroxy‐terminated prepolymers were unsuccessful. The diacetylene units were incorporated into the polymer main chain via aminosilane–disilanol polycondensation between 1,4‐bis(dimethylaminodimethylsilyl)butadiyne [(CH3)2N? Si(CH3)2? C?C? C?C? (CH3)2SiN(CH3)2] and the hydroxy‐terminated prepolymers. Linear polymers were characterized by Fourier transform infrared, 1H and 13C NMR, gel permeation chromatography, differential scanning calorimetry, and thermogravimetric analysis, and they were thermally crosslinked through the diacetylene units, producing networked polymeric systems. The thermooxidative stability of the networked polymers is discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1334–1341, 2002  相似文献   

12.
Dinuclear Palladium(II), Platinum(II), and Iridium(III) Complexes of Bis[imidazol‐4‐yl]alkanes The reaction of bis(1,1′‐triphenylmethyl‐imidazol‐4‐yl) alkanes ((CH2)n bridged imidazoles L(CH2)nL, n = 3–6) with chloro bridged complexes [R3P(Cl)M(μ‐Cl)M(Cl)PR3] (M = Pd, Pt; R = Et, Pr, Bu) affords the dinuclear compounds [Cl2(R3P)M–L(CH2)nL–M(PR3)Cl2] 1 – 17 . The structures of [Cl2(Et3P)Pd–L(CH2)3L–Pd(PEt3)Cl2] ( 1 ), [Cl2(Bu3P)Pd–L(CH2)4L–Pd(PBu3)Cl2] ( 10 ), [Cl2(Et3P)Pd–L(CH2)5L–Pd(PEt3)Cl2] ( 3 ), [Cl2(Et3P)Pt–L(CH2)3L–Pt(PEt3)Cl2] ( 13 ) with trans Cl–M–Cl groups were determined by X‐ray diffraction. Similarly the complexes [Cl2(Cp*)Ir–L(CH2)nL–Ir(Cp*)Cl2] (n = 4–6) are obtained from [Cp*(Cl)Ir(μ‐Cl)2Ir(Cl)Cp*] and the methylene bridged bis(imidazoles).  相似文献   

13.
Poly‐α‐olefins ranging from poly‐1‐pentene to poly‐1‐octadecene with narrow polydispersities were synthesized with (CH3)2Si(2‐methylbenz[e]indenyl)2ZrCl2 and methylaluminoxane at polymerization temperatures (Tp 's) ranging from −15 to 180 °C and were characterized by gel permeation chromatography, NMR spectroscopy, and differential scanning calorimetry. The molar masses of the homopolymers obtained with (CH3)2Si(2‐methylbenz[e]indenyl)2ZrCl2 were notably higher than those of poly‐α‐olefins synthesized with other zirconium‐based metallocenes under similar conditions. The temperature dependence of the molar mass distribution of the poly‐α‐olefins can be described by a common exponential decay function regardless of the investigated monomer. At Tp 's ranging from 20 to 100 °C, moderate isotacticity prevailed, but outside this temperature range, the polymers were less stereoregular. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2333–2339, 2000  相似文献   

14.
In order to explore the chemistry of the bidentate ligand 2,2‐dimethylpropane‐1,3‐diyl diisocyanide and to investigate the effect of counter‐ions on the polymeric structure of (2,2‐dimethylpropane‐1,3‐diyl diisocyanide)silver(I) complexes, the title polymeric compound, [AgI(C7H10N2)]n, was synthesized by treatment of 2,2‐dimethylpropane‐1,3‐diyl diisocyanide with AgI. X‐ray powder diffraction studies show, as expected, a polymeric structure, similar to the very recently reported Cl and NO3 analogues [AgX(C7H10N2)]n (X = Cl or NO3). In the title structure, the AgI centre is bridged to two adjacent AgI neighbours by bidentate 2,2‐dimethylpropane‐1,3‐diyl diisocyanide ligands via the NC groups to form [Ag{CNCH2C(CH3)2CH2NC}]n chains. The iodide counter‐ions crosslink the AgI centres of the chains to form a two‐dimensional polymeric {[Ag{CNCH2C(CH3)2CH2NC}]I}n network. This study also shows that this bidentate ligand forms similar polymeric structures on treatment with AgX, regardless of the nature of the counter‐ion X, and also has a strong tendency to form polymeric complexes rather than dimeric or trimeric ones.  相似文献   

15.
The asymmetric unit of the title complex, [PtCl2(C14H38B10P2)]·0.5CH2Cl2 or cis‐[PtCl2{1,2‐(PiPr2)2‐1,2‐C2B10H10}]·0.5CH2Cl2, contains one disordered solvent mol­ecule and two mol­ecules of the complex, in which each PtII atom displays slightly distorted square‐planar coordination geometry. The P atoms connected to the cage C atoms are coordinated to the PtII atom. The Pt—P distances vary slightly [2.215 (3) and 2.235 (4) Å] and the Pt—Cl distances are equal [2.348 (3) and 2.353 (5) Å].  相似文献   

16.
Random copolymers of styrene, p‐azidomethylstyrene and 1H,1H,2H,2H‐perfluorodecyl methacrylate were prepared in two steps involving nitroxide‐mediated radical copolymerization and azidation reaction and further characterized by 1H and 19F NMR, size exclusion chromatography, differential scanning calorimetry, and thermal gravimetric analysis. Ultrathin films of these azidomethyl‐functionalized fluorinated random copolymers, with thicknesses ranging from 20 to 100 nm, were spin coated onto Si substrates and then crosslinked by ultraviolet irradiation resulting in smooth and insoluble crosslinked fluorinated polymer mats. The surface properties of the supported thin films were investigated by X‐ray photoelectron spectroscopy and water contact angle measurements. These tailored photo‐crosslinked coatings afford a versatile control and homogenization of the wetting properties of different organic and inorganic substrates. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3888–3895, 2010  相似文献   

17.
Peripherally metalated porphyrinoids are promising functional π‐systems displaying characteristic optical, electronic, and catalytic properties. In this work, 5‐(2‐pyridyl)‐ and 5,10,15‐tri(2‐pyridyl)‐BIII‐subporphyrins were prepared and used to produce cyclometalated subporphyrins by reactions with [Cp*IrCl2]2, which proceeded through an efficient C?H activation to give the corresponding mono‐ and tri‐IrIII complexes, respectively. While the mono‐IrIII complex was obtained as a diastereomeric mixture, a C3‐symmetric tri‐IrIII complex with the three Cp*‐units all at the concave side was predominantly obtained in a high yield of 90 %, which displays weak NIR phosphorescence even at room temperature in degassed CH2Cl2, differently from the mono‐IrIII complexes.  相似文献   

18.
The synthesis and the X‐ray structural analysis of the title compound, μ‐chloro‐1:2κ2Cl‐tri­chloro‐1κCl,2κ2Cl‐tetra­methyl‐1κ2C,2κ2C‐(N‐methyl­pyrrolidin‐2‐one)‐1κO‐ditin(IV), [Sn2Cl4(CH3)4(C5H9NO)], are described. The title compound is found to exhibit a distorted trigonal–bipyramidal geometry at both SnIV atoms. The Sn—Cl—Sn angle involving the bridging chlorine ligand is 135.56 (5)°, with the Sn—Cl bond lengths being 2.5704 (13) and 3.1159 (13) Å.  相似文献   

19.
A series of Al(III) and Sn(II) diiminophosphinate complexes have been synthesized. Reaction of Ph(ArCH2)P(?NBut)NHBut (Ar = Ph, 3 ; Ar = 8‐quinolyl, 4 ) with AlR3 (R = Me, Et) gave aluminum complexes [R2Al{(NBut)2P(Ph)(CH2Ar)}] (R = Me, Ar = Ph, 5 ; R = Me, Ar = 8‐quinolyl, 6 ; R = Et, Ar = Ph, 7 ; R = Et, Ar = quinolyl, 8 ). Lithiated 3 and 4 were treated with SnCl2 to afford tin(II) complexes [ClSn{(NBut)2P(Ph)(CH2Ar)}] (Ar = Ph, 9 ; Ar = 8‐quinolyl, 10 ). Complex 9 was converted to [(Me3Si)2NSn{(NBut)2P(Ph)(CH2Ph)}] ( 11 ) by treatment with LiN(SiMe3)2. Complex 11 was also obtained by reaction of 3 with [Sn{N(SiMe3)2}2]. Complex 9 reacted with [LiOC6H4But‐4] to yield [4‐ButC6H4OSn{(NBut)2P(Ph)(CH2Ph)}] ( 12 ). Compounds 3–12 were characterized by NMR spectroscopy and elemental analysis. The structures of complexes 6 , 10 , and 11 were further characterized by single crystal X‐ray diffraction techniques. The catalytic activity of complexes 5–8 , 11 , and 12 toward the ring‐opening polymerization of ε‐caprolactone (CL) was studied. In the presence of BzOH, the complexes catalyzed the ring‐opening polymerization of ε‐CL in the activity order of 5 > 7 ≈ 8 > 6 ? 11 > 12 , giving polymers with narrow molecular weight distributions. The kinetic studies showed a first‐order dependency on the monomer concentration in each case. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4621–4631, 2006  相似文献   

20.
Polymerizations of higher α‐olefins, 1‐pentene, 1‐hexene, 1‐octene, and 1‐decene were carried out at 30 °C in toluene by using highly isospecific rac‐Me2Si(1‐C5H2‐2‐CH3‐4‐t Bu)2Zr(NMe2)2 (rac‐1) compound in the presence of Al(iBu)3/[CPh3][B(C6F5)4] as a cocatalyst formulation. Both the bulkiness of monomer and the lateral size of polymer influenced the activity of polymerization. The larger lateral of polymer chain opens the π‐ligand of active site wide and favors the insertion of monomer, while the large size of monomer inserts itself into polymer chain more difficultly due to the steric hindrance. Highly isotactic poly(α‐olefin)s of high molecular weight (MW) were produced. The MW decreased from polypropylene to poly(1‐hexene), and then increased from poly(1‐hexene) to poly(1‐decene). The isotacticity (as [mm] triad) of the polymer decreased with the increased lateral size in the order: poly(1‐pentene) > poly(1‐hexene) > poly(1‐octene) > poly(1‐decene). The similar dependence of the lateral size on the melting point of polymer was recorded by differential scanning calorimetry (DSC). 1H NMR analysis showed that vinylidene group resulting from β‐H elimination and saturated methyl groups resulting from chain transfer to cocatalyst are the main end groups of polymer chain. The vinylidene and internal double bonds are also identified by Raman spectroscopy. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1687–1697, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号