首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dibenzofulvene (DBF) affords a polymer having π‐stacked conformation by anionic, cationic, and free‐radical polymerization. In this study, DBF was polymerized anionically using potassium menthoxide as initiator to obtain optically active poly(DBF) having a chiral menthoxy group as a terminal group. The obtained polymer indicated circular dichroism (CD) absorption bands in the absorption wavelength range of fluorenyl group, indicating that chiral conformation was induced to the stacked main chain by the influence of the terminal group. The CD intensity was reversibly affected by temperature of measurement; hence, the chiral conformation may be rather dynamic. The effect of the terminal group was found to decrease as the chain length increased. Theoretical CD calculation indicated that the obtained polymer has a left‐handed helical conformation and that the dihedral angle between neighboring monomeric units might be about 10–20°. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 239–246, 2009  相似文献   

2.
Triblock copolymers of poly(styrenesulfonate)‐b‐poly(ethylene glycol)‐b‐poly(styrenesulfonate) with narrow molecular weight distribution (Mw/Mn = 1.28–1.40) and well‐defined structure have been synthesized in aqueous solution at 70 °C via reversible addition‐fragmentation chain transfer polymerization. Poly(ethylene glycol) (PEG) capped with 4‐cyanopentanoic acid dithiobenzoate end groups was used as the macro chain transfer agent (PEG macro‐CTA) for sole monomer sodium 4‐styrenesulfonate. The reaction was controllable and displayed living polymerization characteristics and the triblock copolymer had designed molecular weight. The reaction rate depended strongly on the CTA and initiator concentration ratio [CTA]0/[ACPA]0: an increase in [CTA]0/[ACPA]0 from 1.0 to 5.0 slowed down the polymerization rate and improved the molecular weight distribution with a prolonged induction time. The polymerization proceeded, following first‐order kinetics when [CTA]0/[ACPA]0 = 2.5 and 5.0. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3698–3706, 2007  相似文献   

3.
The controlled atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) catalyzed by iron halide/N‐(n‐hexyl)‐2‐pyridylmethanimine (NHPMI) is described. The ethyl 2‐bromoisobutyrate (EBIB)‐initiated ATRP with [MMA]0/[EBIB]0/[iron halide]0/[NHPMI]0 = 150/1/1/2 was better controlled in 2‐butanone than in p‐xylene at 90 °C. Initially added iron(III) halide improved the controllability of the reactions in terms of molecular weight control. The p‐toluenesulfonyl chloride (TsC1)‐initiated ATRP were uncontrolled with [MMA]0/[TsC1]0/[iron halide]0/[NHPMI]0 = 150/1/1/2 in 2‐butanone at 90 °C. In contrast to the EBIB‐initiated system, the initially added iron(III) halide greatly decreased the controllability of the TsC1‐initiated ATRP. The ration of iron halide to NHPMI significantly influenced the controllability of both EBIB and TsC1‐initiated ATRP systems. The ATRP with [MMA]0/[initiator]0/[iron halide]0/[NHPMI]0 = 150/1//1/2 provided polymers with PDIs ≥ 1.57, whereas those with [iron halide]0/[NHPMI]0 = 1 resulted in polymers with PDIs as low as 1.35. Moreover, polymers with PDIs of approximately 1.25 were obtained after their precipitation from acidified methanol. The high functionality of the halide end group in the obtained polymer was confirmed by both 1H NMR and a chain‐extenstion reaction. Cyclic voltammetry was utilized to explain the differing catalytic behaviors of the in situ‐formed complexes by iron halide and NHPMI with different molar ratios. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4882–4894, 2004  相似文献   

4.
Condensation polymerization of 6‐(N‐substituted‐amino)‐2‐naphthoic acid esters ( 1 ) was investigated as an extension of chain‐growth condensation polymerization (CGCP). Methyl 6‐(3,7‐dimethyloctylamino)‐2‐naphthoate ( 1b ) was polymerized at ?10 °C in the presence of phenyl 4‐methylbenzoate ( 2 ) as an initiator and lithium 1,1,1,3,3,3‐hexamethyldisilazide (LiHMDS) as a base. When the feed ratio [ 1a ]0/[ 2 ]0 was 10 or 20, poly(naphthalenecarboxamide) with defined molecular weight and low polydispersity was obtained, together with a small amount of cyclic trimer. However, polymer was precipitated during polymerization under similar conditions in [ 1a ]0/[ 2 ]0 = 34. To increase the solubility of the polymer, monomers 1c and 1d with a tri(ethylene glycol) (TEG) monomethyl ether side chain instead of the 3,7‐dimethyloctyl side chain were synthesized. Polymerization of the methyl ester monomer 1c did not proceed well, affording only oligomer and unreacted 1c , whereas polymerization of the phenyl ester monomer 1d afforded well‐defined poly(naphthalenecarboxamide) together with small amounts of cyclic oligomers in [ 1d ]0/[ 2 ]0 = 10 and 29. The polymerization at high feed ratio ([ 1d ]0/[ 2 ]0 = 32.6) was accompanied with self‐condensation to give polyamide with a lower molecular weight than the calculated value. Such undesirable self‐condensation would result from insufficient deactivation of the electrophilic ester moiety by the electron‐donating resonance effect of the amide anion. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
A variety of well‐defined tetra‐armed star‐shaped poly(N‐substituted p‐benzamide)s, including block poly(p‐benzamide)s with different N‐substituents, and poly(N‐substituted m‐benzamide)s, were synthesized by using porphyrin‐cored tetra‐functional initiator 2 under optimized polymerization conditions. The initiator 2 allowed discrimination of the target star polymer from concomitantly formed linear polymer by‐products by means of GPC with UV detection, and the polymerization conditions were easily optimized for selective synthesis of the star polybenzamides. Star‐shaped poly(p‐benzamide) with tri(ethylene glycol) monomethyl ether (TEG) side chain was selectively obtained by polymerization of phenyl 4‐{2‐[2‐(2‐methoxyethoxy)ethoxy]ethylamino}benzoate ( 1b ′) with 2 at ?10 °C in the case of [ 1b ′]0/[ 2 ]0 = 40 and at 0 °C in the case of [ 1b ′]0/[ 2 ]0 = 80. Star‐shaped poly(p‐benzamide) with 4‐(octyloxy)benzyl (OOB) substituent was obtained only when methyl 4‐[4‐(octyloxy)benzylamino]benzoate ( 1c ) was polymerized at 25 °C at [ 1c ]0/[ 2 ]0 = 20. On the other hand, star‐shaped poly(m‐benzamide)s with N‐butyl, N‐octyl, and N‐TEG side chains were able to be synthesized by polymerization of the corresponding meta‐substituted aminobenzoic acid alkyl ester monomers 3 at 0 °C until the ratio of [ 3 ]0/[ 2 ]0 reached 80. However, star‐shaped poly(m‐benzamide)s with the OOB group were contaminated with linear polymer even when the feed ratio of the monomer 3d to 2 was 20. The UV–visible spectrum of an aqueous solution of star‐shaped poly(p‐benzamide) with TEG side chain indicated that the hydrophobic porphyrin core was aggregated. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
Radical polymerization of N‐methyl‐N‐(2‐pyridyl)acrylamide (MPyAAm) was carried out in dichloromethane at low temperatures in the presence of trifluoroacetic acid (TFA). The m dyad contents of the polymers obtained at 0 °C increased linearly from 37 to 60% with an increase in the [TFA]0/[MPyAAm]0 ratio from 1 to 5. Nuclear magnetic resonance (NMR) analysis of MPyAAm–TFA mixtures in dichloromethane‐d2 revealed that the favorable conformation in terms of the pyridyl group to the carbonyl group in MPyAAm switched from s‐trans to s‐cis by protonation. The results suggest that controlling the conformation of MPyAAm resulted in control of the stereospecificity in radical polymerization of the monomer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
The title compound, C33H34O2Si, has been obtained as a product in the synthesis of 6,13‐bis­[(triisopropyl­silyl)ethynyl]‐6,13‐dihydro­penta­cene‐6,13‐diol. The solid‐state structure reveals a dimer, with strong hydrogen bonds holding the two mol­ecules in a face‐to‐face arrangement [O⋯O = 2.746 (2) Å and O—H⋯O = 173 (2)°]. Within each dimer, the penta­cene units are π‐stacked (the distance between the mean least‐squares planes of 22 C atoms is 3.60 Å).  相似文献   

8.
The bulk radical copolymerization of tetrafluoroethylene (TFE) with 4,5,5‐trifluoro‐4‐ene pentyl acetate (FAc), initiated by tert‐butyl peroxypivalate to synthesize original, functionalized fluorinated poly(TFE‐co‐FAc), was investigated. FAc monomer was prepared from a five‐step process. The copolymerization was carried out in batch at different initial monomer molar ratios ([TFE]o/[FAc]o ranging from 95/5 to 10/90 mol %) and at different initiator concentrations (ranging between 0.075 and 1.100 mol % about the monomers) at 70 °C. All the experiments revealed the production of fluorooligomers as evidenced by an allylic‐transfer reaction from FAc. The microstructure of these copolymers (i.e., the molar percentage of both monomers in the copolymers) was assessed by 19F NMR spectroscopy. From the kinetics of copolymerization, two key characteristics were determined. First, the reaction order to the initiator (being 1.07) and that of FAc monomer (0.85) showed a heterogeneous character of the copolymerization and monomolecular chain‐transfer reaction to FAc. Second, from the Tidwell and Mortimer method, the reactivity ratios of both comonomers were determined, showing a tendency to alternance in a wide range of initial monomeric ratios (30/70–70/30): rFAc = 0.20 ± 0.26 and rTFE = 0.18 ± 0.15. Alfrey and Price's Q and e values of FAc were calculated by Greenley's technique [QFAc = 0.098 (from QTFE = 0.032) and eFAc = 1.23 (vs eTFE = 1.63)], indicating that FAc is a strong electron‐withdrawing monomer as TFE. The normalized monomer‐diad and triad fractions as a function of the polymer composition were obtained from the comonomer sequence‐distribution procedure. The average molecular weights and molecular weight distributions as well as the thermal properties (glass‐transition temperature and decomposition temperature) of the fluorocopolymers were assessed and are discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1693–1706, 2004  相似文献   

9.
The bulk free‐radical polymerization of 2‐[(N,N‐dialkylamino)methyl]‐1,3‐butadiene with methyl, ethyl, and n‐propyl substituents was studied. The monomers were synthesized via substitution reactions of 2‐bromomethyl‐1,3‐butadiene with the corresponding dialkylamines. For each monomer the effects of the polymerization initiator, initiator concentration, and reaction temperature on the final polymer structure, molecular weight, and glass‐transition temperature (Tg) were examined. Using 2,2′‐azobisisobutyronitrile as the initiator at 75 °C, the resulting polymers displayed a majority of 1,4 microstructures. As the temperature was increased to 100 and 125 °C using t‐butylperacetate and t‐butylhydroperoxide, the percentage of the 3,4 microstructure increased. Differential scanning calorimetry indicated that all of the Tg values were lower than room temperature. The Tg values were higher when the majority of the polymer structure was 1,4 and decreased as the percentage of the 3,4 microstructure increased. The Diels–Alder side products found in the polymer samples were characterized using NMR and gas chromatography‐mass spectrometry methods. The polymerization temperature and initiator concentration were identified as the key factors that influenced the Diels–Alder dimer yield. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4070–4080, 2000  相似文献   

10.
The crystal structure of a third polymorphic form of the known 4‐(2,6‐difluorophenyl)‐1,2,3,5‐dithiadiazolyl radical, C7H3F2N2S2, is reported. This new polymorph represents a unique crystal‐packing motif never before observed for 1,2,3,5‐dithiadiazolyl (DTDA) radicals. In the two known polymorphic forms of the title compound, all of the molecules form cis‐cofacial dimers, such that two molecules are π‐stacked with like atoms one on top of the other, a common arrangement for DTDA species. By contrast, the third polymorph, reported herein, contains two crystallographically unique molecules organized such that only 50% are dimerized, while the other 50% remain monomeric radicals. The dimerized molecules are arranged in the trans‐antarafacial mode. This less common dimer motif for DTDA species is characterized by π–π interactions between the S atoms [S...S = 3.208 (1) Å at 110 K], such that the two molecules of the dimer are related by a centre of inversion. The most remarkable aspect of this third polymorph is that the DTDA dimers are co‐packed with monomers. The monomeric radicals are arranged in one‐dimensional chains directed by close lateral intermolecular contacts between the two S atoms of one DTDA heterocycle and an N atom of a neighbouring coplanar DTDA heterocycle [S...N = 2.857 (2) and 3.147 (2) Å at 110 K].  相似文献   

11.
N–Isopropylacrylamide (NIPAM) was polymerized using 1‐pyrenyl 2‐chloropropionate (PyCP) as the initiator and CuCl/tris[2‐(dimethylamino)ethyl]amine (Me6TREN) as the catalyst system. The polymerizations were performed using the feed ratio of [NIPAM]0/[PyCP]0/[CuCl]0/[Me6TREN]0 = 50/1/1/1 in DMF/water of 13/2 at 20 °C to afford an end‐functionalized poly(N‐isopropylacrylamide) with the pyrenyl group (Py–PNIPAM). The characterization of the Py–PNIPAM using matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry provided the number–average molecular weight (Mn,MS). The lower critical solution temperature (LCST) for the liquid–solid phase transition was 21.7, 24.8, 26.5, and 29.3 °C for the Py–PNIPAMs with the Mn,MS's of 3000, 3400, 4200, and 5000, respectively; hence, the LCST was dramatically lowered with the decreasing Mn,MS. The aqueous Py–PNIPAM solution below the LCST was characterized using a static laser light scattering (SLS) measurement to determine its molar mass, Mw,SLS. The aqueous solutions of the Py–PNIPAMs with the Mn,MS's of 3000, 3400, 4200, and 5000 showed the Mw,SLS of 586,000, 386,000, 223,000, and 170,000, respectively. Thus, lowering the LCST for Py–PNIPAM should be attributable to the formation of the PNIPAM aggregates. The LCST of 21.7 °C for Py–PNIPAM with the Mn,MS of 3000 was effectively raised by adding β‐cyclodextrin (β‐CD) and reached the constant value of ~26 °C above the molar ratio of [β‐CD]/[Py–PNIPAM] = 2/1, suggesting that β‐CD formed an inclusion complex with pyrene in the chain‐end to disturb the formation of PNIPAM aggregates, thus raising the LCST. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1117–1124, 2006  相似文献   

12.
Pyridine‐2‐carboximidates [methyl ( 1a ), ethyl ( 1b ), isopropyl ( 1c ), cyclopentyl ( 1d ), cyclohexyl ( 1e ), n‐octyl ( 1f ), and benzyl ( 1g )] were prepared from the reaction of 2‐cyanopyridine with the corresponding alcohols. Cyclopentyl‐substituted 1d was found to be a highly effective ligand for copper‐catalyzed atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA). For example, the observed rate constant for a CuBr/ 1d catalytic system was found to be nearly twice as high as the cyclohexyl‐substituted CuBr/ 1e catalytic system [kobs = (1.19 vs 0.56) × 10?4 s?1). The effects of the solvents, temperature, catalyst/initiator, and solvent/monomer ratio on the ATRP of MMA were studied systematically for the CuBr/ 1d catalytic system. The optimum condition for the ATRP of MMA was found to be a 1:2:1:400 [CuBr]o/[ 1d ]o/[ethyl 2‐bromoisobutyrate]o/[MMA]o ratio at 60 °C in veratrole solution, which yielded well‐defined poly(MMA) with a narrow molecular weight distribution of 1.14. The catalytically active copper complex 2d was isolated from the reaction of CuBr with 1d . Narrow molecular weight distributions as low as 1.06 were achieved for the CuBr/ 1d catalytic system by employing 10% of the deactivator CuBr2. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2747–2755, 2004  相似文献   

13.
The controlled free‐radical homopolymerization of n‐butyl acrylate was studied in aqueous miniemulsions at 112 and 125 °C with a low molar mass alkoxyamine unimolecular initiator and an acyclic β‐phosphonylated nitroxide mediator, Ntert‐butyl‐N‐(1‐diethylphosphono‐2,2‐dimethylpropyl) nitroxide, also called SG1. The polymerizations led to stable latices with 20 wt % solids and were obtained with neither coagulation during synthesis nor destabilization over time. However, in contrast to latices obtained via classical free‐radical polymerization, the average particle size of the final latices was large, with broad particle size distributions. The initial [SG1]0/[alkoxyamine]0 molar ratio was shown to control the rate of polymerization. The fraction of SG1 released upon macroradical self‐termination was small with respect to the initial alkoxyamine concentration, indicating a very low fraction of dead chains. Average molar masses were controlled by the initial concentration of alkoxyamine and increased linearly with monomer conversion. The molar mass distribution was narrow, depending on the initial concentration of free nitroxide in the system. The initiator efficiency was lower than 1 at 112 °C but was very significantly improved when either a macroinitiator was used at 112 °C or the polymerization temperature was raised to 125 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4410–4420, 2002  相似文献   

14.
The free‐radical homopolymerization and copolymerization behavior of N‐(2‐methylene‐3‐butenoyl)piperidine was investigated. When the monomer was heated in bulk at 60 °C for 25 h without an initiator, about 30% of the monomer was consumed by the thermal polymerization and the Diels–Alder reaction. No such side reaction was observed when the polymerization was carried out in a benzene solution with 1 mol % 2,2′‐azobisisobutylonitrile (AIBN) as an initiator. The polymerization rate equation was found to be Rp ∝ [AIBN]0.507[M]1.04, and the overall activation energy of polymerization was calculated to be 89.5 kJ/mol. The microstructure of the resulting polymer was exclusively a 1,4‐structure that included both 1,4‐E and 1,4‐Z configurations. The copolymerizations of this monomer with styrene and/or chloroprene as comonomers were carried out in benzene solutions at 60 °C with AIBN as an initiator. In the copolymerization with styrene, the monomer reactivity ratios were r1 = 6.10 and r2 = 0.03, and the Q and e values were calculated to be 10.8 and 0.45, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1545–1552, 2003  相似文献   

15.
A chiral monomer containing L ‐leucine as a pendant group was synthesized from methacryloyl chloride and L ‐leucine in presence of sodium hydroxide at 4 °C. The monomer was polymerized by free radical polymerization in propan‐2‐ol at 60 °C using 2,2′‐azobis isobutyronitrile (AIBN) as an initiator under nitrogen atmosphere. The polymer, poly(2‐(Methacryloyloxyamino)‐4‐methyl pentanoic acid) is thus obtained. The molecular weight of the polymer was determined to be: Mw is 6.9 × 103 and Mn is 5.6 × 103. The optical rotation of both chiral monomer and its polymer varies with the solvent polarity. The amplification of optical rotation due to transformation of monomer to polymer is associated with the ordered conformation of chiral monomer unit in the polymeric chain due to some secondary interactions like H‐bonding. The synthesized monomer and polymer exhibit intense Cotton effect at 220 nm. The conformation of the chain segments is sensitive to external stimuli, particularly the pH of the medium. In alkaline medium, the ordered chain conformation is destroyed resulting disordered random coils. The ordered coiling conformation is more firmly present on addition of HCl. The polymer exhibits swelling‐deswelling characteristics with the change of pH of the medium, which is reversible. The Cotton effect decreases linearly with the increase of temperature which is reversible on cooling. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2228–2242, 2009  相似文献   

16.
Detailed kinetic studies during the cationic ring‐opening polymerization (CROP) of 2‐ethyl‐2‐oxazoline (EtOx) are conducted using four bifunctional bromo‐type initiators in N,N‐dimethylformamide (DMF) at 140 °C. Serving as models to quantify chain transfer to monomer occurring during the CROP initiated by monofunctional initiators, size exclusion chromatography (SEC) resolves a second molar mass distribution with lower molar mass at initial [monomer] to [initiation site] ratios ([M]0/[I]0) of 25, while the resolution is insufficient at [M]0/[I]0 of 10. Slightly slow initiation is revealed at [M]0/[I]0 = 25, which prohibits the derivation of chain transfer rates by fitting of the size exclusion chromatography (SEC) data. Although conventional kinetic plots give no indication of significant amounts of chain transfer, the molar mass distributions resolved by SEC can unambiguously be identified as such by matrix‐assisted laser desorption/ionization mass spectrometry (MALDI MS) in both the high as well as the low m /z regions of the mass spectra.  相似文献   

17.
A range of novel cationic star‐like polymers (Star‐P(MeDMA)s) were synthesized through atom transfer radical polymerization (ATRP) by core‐first method, using a β‐cyclodextrin initiator with 21 initiation sites (21Br‐β‐CD). Methyl chloride‐quaternized 2‐(dimethylamino)ethyl methacrylate (MeDMA) was polymerized in an aqueous medium using 21Br‐β‐CD, Cu(I)Br, and 2,2′‐dipyridyl as an initiator, catalyst, and ligand, respectively. The effects of polymerization temperature and monomer/initiator ratios on the degree and kinetics of polymerization were investigated. The molecular weights, hydrodynamic sizes, and charge densities of the quaternized polymers were characterized using gel permeation chromatography (GPC), dynamic light scattering (DLS), and colloidal titration, respectively. The results demonstrated that the moderate aqueous solubility of the 21Br‐β‐CD initiator had significant impact on the physicochemical properties of the obtained star polymers. The polymerization of 500/1/2/5 ([M]0/[I]0/[Cu(I)0/[L]0]) at 90 °C for 6 h was found to be the best condition to synthesize the proposed cationic star polymer with well‐defined structures in aqueous medium. The nonlinear relationship between the apparent charge density and the particle size of the cationic star polymers was further revealed by GPC and DLS measurements. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6345–6354, 2005  相似文献   

18.
Free‐radical homo‐ and copolymerization behavior of N,N‐diethyl‐2‐methylene‐3‐butenamide (DEA) was investigated. When the monomer was heated in bulk at 60 °C for 25 h without initiator, rubbery, solid gel was formed by the thermal polymerization. No such reaction was observed when the polymerization was carried out in 2 mol/L of benzene solution with with 1 mol % of azobisisobutyronitrile (AIBN) as an initiator. The polymerization rate (Rp) equation was Rp ∝ [DEA]1.1[AIBN]0.51, and the overall activation energy of polymerization was calculated 84.1 kJ/mol. The microstructure of the resulting polymer was exclusively a 1,4‐structure where both 1,4‐E and 1,4‐Z structures were included. From the product analysis of the telomerization with tert‐butylmercaptan as a telogen, the modes of monomer addition were estimated to be both 1,4‐ and 4,1‐addition. The copolymerizations of this monomer with styrene and/or chloroprene as comonomers were also carried out in benzene solution at 60 °C. In the copolymerization with styrene, the monomer reactivity ratios obtained were r1 = 5.83 and r2 = 0.05, and the Q and e values were Q = 8.4 and e = 0.33, respectively. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 999–1007, 2004  相似文献   

19.
The title complex, C17H9N5·C6H4S4, contains π‐deficient bis(di­nitrile) and TTF mol­ecules stacked alternately in columns along the a‐axis direction; the interplanar angle between the TTF molecule and the isoindolinyl C4N[C(CN)2]2 moiety is 1.21 (4)°. The N‐allyl moiety in the TCPI mol­ecule is oriented at an angle of 87.10 (10)° with respect to the five‐membered C4N ring, and the four C[triple‐bond]N bond lengths range from 1.134 (3) to 1.142 (3) Å, with C—C[triple‐bond]N angles in the range 174.3 (3)–176.9 (2)°. In the TTF system, the S—C bond lengths are 1.726 (3)–1.740 (3) and 1.751 (2)–1.763 (2) Å for the external S—C(H) and internal S—C(S) bonds, respectively.  相似文献   

20.
The ring‐opening polymerization (ROP) of cyclic esters, such as ε‐caprolactone, 1,5‐dioxepan‐2‐one, and racemic lactide using the combination of 3‐phenyl‐1‐propanol as the initiator and triflimide (HNTf2) as the catalyst at room temperature with the [monomer]0/[initiator]0 ratio of 50/1 was investigated. The polymerizations homogeneously proceeded to afford poly(ε‐caprolactone) (PCL), poly(1,5‐dioxepan‐2‐one) (PDXO), and polylactide (PLA) with controlled molecular weights and narrow polydispersity indices. The molecular weight determined from an 1H NMR analysis (PCL, Mn,NMR = 5380; PDXO, Mn,NMR = 5820; PLA, Mn,NMR = 6490) showed good agreement with the calculated values. The 1H NMR and matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry analyses strongly indicated that the obtained compounds were the desired polyesters. The kinetic measurements confirmed the controlled/living nature for the HNTf2‐catalyzed ROP of cyclic esters. A series of functional alcohols, such as propargyl alcohol, 6‐azido‐1‐hexanol, N‐(2‐hydroxyethyl)maleimide, 5‐hexen‐1‐ol, and 2‐hydroxyethyl methacrylate, successfully produced end‐functionalized polyesters. In addition, poly(ethylene glycol)‐block‐polyester, poly(δ‐valerolactone)‐block‐poly(ε‐caprolactone), and poly(ε‐caprolactone)‐block‐polylactide were synthesized using the HNTf2‐catalyzed ROP. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2455–2463  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号