首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of sulfonated poly(ether ether ketone)/monoethanolamine/adipic acid (SPEEK/MEA/AA) composite membranes are prepared and investigated to assess their possibility as proton exchange membranes in direct methanol fuel cells (DMFCs). A preliminary evaluation shows that introducing MEA and AA into SPEEK matrix decreases the thermal stability of membrane. However, the degradation temperatures are still above 260 °C, satisfying the requirement for fuel cell operation. Compared with the pure SPEEK membrane, the composite membranes exhibit not only lower water uptake and swelling ratios but also better mechanical property and oxidative stability. Noticeably, the methanol diffusion coefficient of the composite membranes decrease significantly from 3.15 × 10?6 to 0.76 × 10?6 cm2/s with increasing MEA and AA content, accompanied by only a small sacrifice in proton conductivity. Although both the methanol diffusion coefficient and the proton conductivity of composite membranes are lower than those of pure SPEEK and Nafion® 117 membranes, their selectivity (conductivity/methanol diffusion coefficient) are higher. In addition, the composite membranes show excellent stability in aqueous methanol solution. The good thermal and chemical stability, low swelling ratio, excellent mechanical property, low methanol diffusion coefficient, and high selectivity make the use of these composite membranes in DMFCs quite attractive. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2871–2879, 2007  相似文献   

2.
The major risk of using carbon nanotubes (CNTs) to modify proton exchange membranes (PEMs) in fuel cells is possible short‐circuiting due to the excellent electrical conductivity of CNTs. In this article, silica‐coated CNTs (SiO2@CNTs) were successfully prepared by a simple sol–gel process and then used as a new additive in the preparation of sulfonated poly (ether ether ketone) (SPEEK)‐based composite membranes. The insulated and hydrophilic silica coated on the surface of CNTs not only eliminated the risk of short‐circuiting, but also enhanced the interfacial interaction between CNTs and SPEEK, and hence promoted the homogeneous dispersion of CNTs in the SPEEK matrix. Moreover, compared to the methanol permeability of the pure SPEEK membrane (3.42 × 10?7 cm2 s?1), the SPEEK/SiO2@CNT composite membrane with a SiO2@CNT loading of 5 wt% exhibits almost one order of magnitude decrease of methanol crossover, while the proton conductivity still remained above 10?2 S cm?1 at room temperature. The obtained results expose the possibility of SPEEK/SiO2@CNT membranes to be served as high‐performance PEMs in direct methanol fuel cells. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The synthesis and characterization of new di‐ and tetra‐sulfonated ether diketone monomers are described. From these monomers, a wide series of sulfonated poly(arylene ether ketone)s (SPAEK) are synthesized by varying the sulfonic acid repartition along the polymer backbones. Their chemical structures are thoroughly characterized by NMR. From these polymers tough membranes are obtained from solution casting method and their water uptake, ionic conductivity, and water/gas permeation properties are determined and compared with those of Nafion membrane. Preliminary fuel cell tests show that SPAEK membranes are promising candidates for fuel cell application. This work brings new insights concerning the beneficial effects of introducing densely sulfonated monomers in a polyarylether macromolecular structure along with fluorinated groups improving conductivity while reducing unwanted excessive swelling. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 771–777  相似文献   

4.
A series of block sulfonated poly(arylene ether ketone) (SPAEK) copolymers with different block lengths and ionic contents were synthesized by a two‐stage process. The morphology of these block SPAEK copolymers was investigated by various methods, such as differential scanning calorimetry (DSC), transmission electron microscope (TEM), and small angle X‐ray scattering (SAXS). Dark colored ionic domains of hundreds of nanometers spreading as a cloud‐like belt were observed in TEM images. The sizes of the ionic domains as a function of block copolymer composition were determined from SAXS curves. The results for the evolution of ionic domains revealed that the block copolymers exhibited more clearly phase‐separated microstructure with increasing ionic contents and hydrophobic sequence lengths. Proton conductivity is closely related to the microstructure, especially the presence of large interconnected ionic domains or ionic channels. Block SPAEK membranes have interconnected ionic clusters to provide continuous hydrophilic channels, resulting in higher proton conductivity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Semi-IPNs were constructed by forming the crosslinking networks via the reaction between BPPO and diamine cross-linkers to overcome the dimensional swelling and methanol-permeation issues of SPEEK.  相似文献   

6.
Proton transport is one of crucial phenomena in electrolytic part highly considered to overcome a limit in fuel cell efficiency improvement. Proton conducting organic electrolyte was modeled and simulated at atomistic level of calculation by doping of butyl urocanate (C4U), a composite material with imidazole substructure, with sulfonated poly(ether ether ketone) (SPEEK) amorphous membrane at various working temperature. Molecular dynamics simulations were used to investigate structural and dynamics characteristic of C4U in the membrane comparing with the SPEEK-hydronium membrane model as a control. From simulations, thermal effect on water and proton carriers cluster surrounding the sulfonate groups was explored. At higher temperature, the more transport dynamics of C4U ions in SPEEK membranes were found than that of hydronium ions in the control system. Likewise, phase separation of hydrophobic and hydrophilic parts was taken into consideration here. A critical role of the enhancing proton conductivity by increasing the diffusion coefficient at temperature beyond C4U melting point in composite polymer membrane was emphasized. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1625–1635  相似文献   

7.
Branched sulfonated poly(ether ketone sulfone)s (Br‐SPEKS) were prepared with bisphenol A, bis(4‐fluorophenyl)sulfone, 3,3′‐disodiumsulfonyl‐4,4′‐difluorobenzophenone, and THPE (1,1,1‐tris‐p‐hydroxyphenylethane), respectively, at 180 °C using potassium carbonate in NMP (N‐methylpyrrolidinone). THPE, as a branching agent, was used with 0.4 mol % of bisphenol A to synthesize branched copolymers. Copolymers containing 10–50 mol % disulfonated units were cast from dimethylsulfoxide solutions to form films. Linear sulfonated poly(ether ketone sulfone)s (SPEKS) were also synthesized without THPE. The films were converted from the salt to acid forms with dilute hydrochloric acid. A series of copolymers were studied by Fourier transform infrared, 1H‐NMR spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymers with water and methanol. The ion‐exchange capacity (IEC), a measure of proton conductivity, was evaluated. The synthesized Br‐SPEKS and SPEKS membranes exhibit conductivities (25 °C) from 1.04 × 10?3 to 4.32 × 10?3 S/cm, water swell from 20.18 to 62.35%, IEC from 0.24 to 0.83 mequiv/g, and methanol diffusion coefficients from 3.2 × 10?7 to 4.7 × 10?7 cm2/S at 25 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1792–1799, 2008  相似文献   

8.
Highly sulfonated multiblock copoly(ether sulfone)s applicable to proton electrolyte fuel cells (PEFCs) were synthesized by the coupling reaction of corresponding hydroxyl‐ terminated oligomers in the presence of highly reactive decafluorobiphenyl (DFB) as a chain extender, followed by postsulfonation with concentrated sulfuric acid. Their molecular weights were reasonably high as determined by viscosity measurement (ηinh = 0.72–1.58 dL/g). It was also confirmed that postsulfonation selectively took place in hydrophilic segments to yield highly sulfonated multiblock copolymers (IEC = 1.90–2.75 mequiv/g). The resulting polymers gave transparent, flexible, and tough membranes by solution casting. The 4b membrane, as a representative sample, demonstrated good mechanical strength in the dry state regardless of high IEC value (2.75 mequiv/g). The 4a–c membranes with higher IEC values (IEC = 2.75–2.79 mequiv/g) maintained high water uptake (13.7–17.7 wt %) at 50% RH and it was still high (7.4–8.5 wt %) at 30% RH. Proton conductivity of all membranes at 80 °C and 95% RH was higher than that of Nafion 117. Furthermore, the 4a membrane showed high proton conductivity, comparable with Nafion 117 in the range of 50–95% RH, and maintained high proton conductivity (2.3 × 10?3 S/cm) even at 30% RH. Finally, the surface morphology of the membrane was investigated by tapping mode atomic force microscopy, which showed well‐connected hydrophilic domains that could work as proton transportation channel. This phase separation and the high water uptake behavior probably contributed to high and effective proton conduction in a wide range of relative humidity. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2757–2764, 2010  相似文献   

9.
Polymer blending is used to modify or improve the dimensional and thermal stability of any two different polymers or copolymers. In this study, both sulfonated polybenzimidazole homopolymer (MS-p-PBI 100) and sulfonated poly(aryl ether benzimidazole) copolymers (MS-p-PBI 50, 60, 70, 80, 90) were successfully synthesized from commercially available monomers. The chemical structure and thermal stability of these polymers was characterized by 1H NMR, FT-IR and TGA techniques. Blend membranes (BMs) were prepared from the salt forms of sulfonated poly(ether sulfone) (PES 70) and MS-p-PBI 100 using dimethylacetamide (DMAc). These blend membranes exhibited good stability in boiling water. The blending of 1 wt.% of MS-p-PBI 100 and 99 wt.% of PES 70 to produce the blend membrane BM 1 reduced membrane swelling, thus leading to good dimensional stability and comparable proton conductivity. Hence, BM 1 was chosen for the fabrication of a membrane electrode assembly (MEA) for proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) applications. This paper reports on PEMFC and DMFC performance under specific conditions.  相似文献   

10.
New sulfonated poly(imidoaryl ether sulfone) copolymers derived from sulfonated 4,4′‐dichlorodiphenyl sulfone, 4,4′‐dichlorodiphenyl sulfone, and imidoaryl biphenol were evaluated as polymer electrolyte membranes for direct methanol fuel cells. The sulfonated membranes were characterized with Fourier transform infrared spectroscopy, thermogravimetric analysis, and proton nuclear magnetic resonance spectra. The state of water in the membranes was measured with differential scanning calorimetry, and the existence of free water and bound water was discussed in terms of the sulfonation level. The 10 wt % weight loss temperatures of these copolymers were above 470 °C, indicating excellent thermooxidative stability to meet the severe criteria of harsh fuel‐cell conditions. The proton conductivities of the membranes ranged from 3.8 × 10?2 to 5 × 10?2 S/cm at 90 °C, depending on the degree of sulfonation. The sulfonated membranes maintained the original proton conductivity even after a boiling water test, and this indicated the excellent hydrolytic stability of the membranes. The methanol permeabilities ranged from 1.65 × 10?8 to 5.14 × 10?8 cm2/s and were lower than those of other conventional sulfonated ionomer membranes, particularly commercial perfluorinated sulfonated ionomer (Nafion). The properties of proton and methanol transport were discussed with respect to the state of water in the membranes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5620–5631, 2005  相似文献   

11.
Hybrid organic/inorganic composite polymer electrolyte membranes consisting of a triblock copolymer (tBC) and varying concentrations of heteropolyacid (HPA) were investigated for application in proton exchange membrane fuel cells (PEMFC). An ABC triblock copolymer, that is, polystyrene‐b‐poly(hydroxyethyl acrylate)‐b‐poly (styrene sulfonic acid), PS‐b‐PHEA‐b‐PSSA, at 28:21:51 wt % was synthesized via atom transfer radical polymerization (ATRP) and solution‐blended with a commercial HPA. Upon the incorporation of HPA into the tBC, the symmetric stretching bands of both the SO group (1187 cm?1) and the ? OH group (3440 cm?1) shifted to lower wavenumbers (1158 and 3370 cm?1). The shift in these FTIR absorptions suggest that the HPA particles strongly interact with both the sulfonic acid groups in the PSSA domains and the hydroxyl groups in the PHEA domains. When the weight fraction of HPA was increased to 0.2, the room‐temperature proton conductivity of the composite membrane increased from 0.048 to 0.065 S/cm, presumably because of the intrinsic conductivity of the HPA particles and the enhanced acidity of the sulfonic acid in the tBC. The water uptake of the composite membranes decreased from 130 to 48% with an increase of the HPA weight fraction to 0.4. The decrease in water uptake is likely a result of the decrease in the number of available water absorption sites because of the hydrogen bonding interaction between the HPA particles and the tBC matrix. Scanning electron microscopy and transmission electron microscopy images showed that the HPA nanoparticles with a diameter of 200–300 nm were uniformly distributed throughout the tBC matrix up to an HPA weight fraction of 0.4. Thermal stability of the composite membranes (decomposition temperature > 400 °C) was enhanced as compared with the pristine tBC membrane, presumably because of the strong specific interaction of the HPA particles with the sulfonic acid and hydroxyl groups. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 691–701, 2008  相似文献   

12.
Two groups of synthesized sulfonated poly(ether sulfone)s with similar structures but different size of repeat units were selected. Investigation of the properties of these copolymers with different sulfonation contents for application as fuel cell membrane was the main aim of this study. These groups of copolymers showed different thermal behavior, mechanical properties, dimensional and oxidative stability, ion exchange capacity, water uptake, and proton conductivity. Structure–property relation was surveyed, and the copolymers showed acceptable results for use as fuel cell membrane. The swelling ratio of the copolymers was in the range of 3.3–6.6%, and the proton conductivity of them was about 0.020–0.077 S/cm at 25°C. These data were comparable with Nafion 115 with 8.15% of swelling ratio and 0.085 S/cm of proton conductivity. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
A new series of sulfonated poly(benzoxazole ether ketone)s (SPAEKBO-X) were prepared by the aromatic nucleophilic polycondensation of 4,4′-(hexafluoroisopropylidene)-diphenol with 2,2′-bis[2-(4-fluorophenyl)benzoxazol-6-yl]hexafluoropropane and sodium 5,5′-carbonylbis-2-fluorobenzenesulfonate in various ratios. Fourier transform infrared and 1H NMR were used to characterize the structures and sulfonic acid contents of the copolymers. The copolymers were soluble in N-methyl-2-pyrrolidinone, N,N-dimethylacetamide, and N,N-dimethylformamide and could form tough and flexible membranes. The protonated membranes were thermally stable up to 320 °C in air. The water uptake, hydrolytic and oxidative stability, and mechanical properties were evaluated. At 30–90 °C and 95% relative humidity, the proton conductivities of the membranes increased with the sulfonic acid content and temperature and almost reached that of Nafion 112. At 90–130 °C, without external humidification, the conductivities increased with the temperature and benzoxazole content and reached above 10−2 S/cm. The SPAEKBO-X membranes, especially those with high benzoxazole compositions, possessed a large amount of strongly bound water (>50%). The experimental results indicate that SPAEKBO-X copolymers are promising for proton-exchange membranes in fuel cells, and their properties might be tailored by the adjustment of the copolymer composition for low temperatures and high humidity or for high temperatures and low humidity; they are especially promising for high-temperature applications. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2273–2286, 2007  相似文献   

14.
The viability of using composite membranes of heteropolyacid (HPA)/polysulfone (PSF), HPA/sulfonated polysulfone (SPSF) for use in proton exchange membrane fuel cells (PEMFC) was investigated. PSF and its sulfonated polymer, SPSF was solution‐blended with phosphotungstic acid, a commercially available HPA. Fourier transform infrared (FTIR) spectroscopy of the HPA–40/SPSF composite exhibited band shifts showing a possibility of intermolecular hydrogen bonding interaction between the HPA additive and the sulfonated polymer. The composite membranes exhibited improved mechanical strength and low water uptake. The conductivity of the composite membrane, HPA–40/SPSF, consisting of 40 wt % HPA and 60 wt % SPSF [with a degree of Sulfonation (DS) of 40%] exhibited a conductivity 0.089 S/cm at room temperature that linearly increased upto 0.14 S/cm at 120 °C, whereas the widely used commercial membrane Nafion 117, exhibited a room temperature conductivity of 0.1 S/cm that increased to only 0.12 S/cm at 120 °C. In contrast, the composite of HPA–40/PSF exhibited a proton conductivity of 0.02 S/cm at room temperature that increased only to 0.07 S/cm at a temperature of 100 °C. The incorporation of HPA into SPSF not only rendered the membranes suitable for elevated temperature operation of PEMFC but also provides an inexpensive alternative compared to Nafion. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1538–1547, 2005  相似文献   

15.
A series of fluorenyl-containing sulfonated poly(aryl ether ether ketone ketone)s (SPFEEKK) were synthesized via aromatic nucleophilic substitution polymerization. The sulfonation content (SC) was controlled by the feed ratios of sulfonated and nonsulfonated monomers. Flexible and strong membranes in the sulfonic acid form were obtained from cast membranes in the sodium salt forms by treatment with acid. The thermal properties, water uptake, swelling ratio, water state, oxidative stability, proton conductivity and methanol permeability were investigated. All the polymers had proton conductivities greater than 1 × 10−2 S/cm at room temperature, and the conductivity values of m-SPFEEKK-80 and p-SPFEEKK-80 were up to 1.86 × 10−1 and 1.78 × 10−1 S/cm at 100 °C. This series of polymers also possessed good dimensional stability in water and low methanol crossover.  相似文献   

16.
Sulfonated poly(ether sulfone)s containing binaphthyl units (BNSHs) were successfully prepared for fuel cell application. BNSHs, which have very simple structures, were easily synthesized by postsulfonation of poly(1,1′‐dinaphthyl ether phenyl sulfone)s and gave tough, flexible, and transparent membranes by solvent casting. The BNSH membranes showed low water uptake compared to a typical sulfonated poly(ether ether sulfone) (BPSH‐40) membrane with a similar ion exchange capacity (IEC) value and water insolubility, even with a high IEC values of 3.19 mequiv/g because of their rigid and bulky structures. The BNSH‐100 membrane (IEC = 3.19 mequiv/g) exhibited excellent proton conductivity, which was comparable to or even higher than that of Nafion 117, over a range of 30–95% relative humidity (RH). The excellent proton conductivity, especially under low RH conditions, suggests that the BNSH‐100 membrane has excellent proton paths because of its high IEC value, and water insolubility due to the high hydrophobicity of the binaphthyl structure. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5827–5834, 2009  相似文献   

17.
As a novel class of proton exchange membrane materials for use in fuel cells, sulfonated poly(phthalazinone ether ketone)s (SPPEKs) were prepared by the modification of poly(phthalazinone ether ketone). Sulfonation reactions were conducted at room temperature with mixtures of 95–98% concentrated sulfuric acid and 27–33% fuming sulfuric acid with different acid ratios, and SPPEK was obtained with a degree of sulfonation (DS) in the desired range of 0.6–1.2. The presence of sulfonic acid groups in SPPEK was confirmed by Fourier transform infrared analysis, and the DS and structures were characterized by NMR. The introduction of sulfonic groups into the polymer chains increased the glass‐transition temperature above the decomposition temperature and also led to an overall decrease in the decomposition temperature. Membrane films were cast from SPPEK solutions in N,N‐dimethylacetamide. Water uptakes and swelling ratios of SPPEK membrane films increased with DS, and SPPEKs with DS > 1.23 were water‐soluble at 80 °C. Proton conductivity increased with DS and temperature up to 95 °C, reaching 10?2S/cm. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 497–507, 2003  相似文献   

18.
In direct methanol fuel cells (DMFC), methanol crossover is a major issue which has reduced the performance of polymer electrolyte membrane (PEM) for energy generation. In this study, graphene oxide (GO) and conductive polyaniline decorated GO (PANI-GO) were used as additives in fabrication of sulfonated poly(ether ether ketone) (SPEEK) nanocomposite PEM membrane to reduce methanol crossover. PANI-GO was synthesized by in situ polymerization method and the formation of PANI coated GO nanostructures was confirmed by surface morphology and crystallinity analysis. The membrane morphology and topography analysis confirmed that GO and PANI-GO were well dispersed on the surface of SPEEK membrane. 0.1 wt% PANI-GO modified SPEEK nanocomposite membrane exhibited the highest water uptake and ion exchange capacity of 40% and 1.74 meq g?1, respectively. The oxidative stability of the nanocomposite membranes also improved. Lower methanol permeability of 4.33 × 10?7 cm?2S?1 was noticed for 0.1 wt% PANI-GO modified SPEEK membrane. PANI-GO modified SPEEK membrane enhanced the proton conductivity, which was due to the existence of acidic and hydrophilic group present in PANI and GO. PANI-GO modified SPEEK membrane held higher selectivity of 1.94 × 104 S cm?3 s?1. Overall, these studies revealed that PANI-GO modified SPEEK membrane is a potential material for DMFC applications.  相似文献   

19.
Sulfonated multiblock copoly(ether sulfone)s applicable to proton exchange membrane fuel cells (PEMFCs) were synthesized by the coupling reaction of the hydroxyl‐terminated hydrophilic and hydrophobic oligomers with different lengths in the presence of highly reactive decafluorobiphenyl (DFB) as a chain extender to investigate the influence of each length on the membranes' properties, such as water uptake, proton conductivity, and morphology. Multiblock copolymers with high molecular weights (Mn > 50,000, Mw > 150,000) were obtained under mild reaction conditions. The resulting membranes demonstrated good oxidative stability for hot Fenton's reagent and maintained high water uptake (7.3–18.7 wt %) under a low relative humidity (50% RH). Proton conductivity of all membranes at 80 °C and 95% RH was higher than that of Nafion 117 membrane, and good proton conductivity of 7.0 × 10?3 S/cm was obtained at 80 °C and 50% RH by optimizing the oligomer lengths. The surface morphology of the membranes was investigated by tapping mode atomic force microscopy (AFM), which showed that the multiblock copolymer membranes had a clearer surface hydrophilic/hydrophobic‐separated structure than that of the random copolymer, and contributed to good and effective proton conduction. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7332–7341, 2008  相似文献   

20.
Soluble phenol formaldehyde resin containing hydroxymethyl groups has been used to modify sulfonated poly(ether ether ketone) (SPEEK). Modification has been carried out with films containing both the polymers and using dimethyl formamide (DMF) as casting solvent at various temperatures under reduced pressure. Associated solvent and the hydrogen‐bonded by‐product dimethyl amine (DMA) were removed through mild alkali–acid–water treatment. Cured and treated films show good and consistent mechanical properties, water uptake (22–25%), ion‐exchange capacity (1.1–1.5 meq/g) and proton conductivity (125–150 mS/cm) at 30°C and hold promise for application in fuel cells, as indicated by a polarization study in a fuel cell test station. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号