首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mixed powders of poly(ethylene terephthalate) (PET) and SiO2 has been subjected to cryomilling. The evolution of microstructure with time was characterized using scanning electron microscope, transmission electron microscope, field emission scanning electron microscope, and laser diffraction particle size analyzer. It was shown that, upon cryomilling for 10 h, SiO2 nano particles were well deconglomerated into single particles (~30 nm) that get homogeneously dispersed in PET matrix. The resulted PET/SiO2 primary particles were flake‐shaped with a size of 400 nm. These primary composite particles agglomerated to form secondary composite particles with an average size about 7.6 μm. A three‐stage model was purposed for the formation mechanism of the nanocomposite structures induced by cryomilling. Our evidences suggest that cryomilling is a capable and promising technique for the production of polymer/inorganic nanocomposites. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1161–1167, 2006  相似文献   

2.
Exposure to the high energy electron beam of a TEM changes the morphology of amorphous Fe oxide nanoparticles from solid spheres to hollow shells. Amorphous Fe oxide nanoparticles prepared via high-temperature methods using hexadecylamine and trioctylphosphine oxide surfactants were compared to crystalline gamma-Fe2O3 particles of similar size. Both sets of particles are fully characterized via SQUID magnetometry, X-ray powder diffraction, BET surface analysis, EPR spectroscopy, high-resolution transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS). Time-resolved TEM images reveal that the amorphous Fe oxide particles evolve from solid spheres into hollow shells in <2 min, whereas crystalline gamma-Fe2O3 are unaffected by the electron beam. The resulting nanocrystalline Fe oxide shells bear striking resemblance to core-shell nanocrystals, but are a result of a morphology change attributed to restructuring of particle voids and defects induced by quasi-melting in the TEM. These results thus imply that caution is necessary when using TEM to analyze nanoparticle core-shell and heterostructured nanoparticles.  相似文献   

3.
In this article, the effect of ultrasonic oscillation on the dispersed morphology of attapulgite in polypropylene (PP) and crystallizing kinetics of PP/attapulgite composites prepared through extrusion in the presence and the absence of ultrasonic oscillation were studied. X‐ray diffraction analysis results showed that ultrasonic oscillation did not change attapulgite crystal structure during extrusion in PP/attapulgite composites. On the other hand, scanning electron microscopy and transmission electron microscope photographs indicated that ultrasonic oscillation promoted the dispersion of attapulgite particles in PP matrix. The dispersed morphology of attapulgite and ultrasound oscillation affected the crystalline form, nucleation rate, crystallization temperature, crystallinity, and spherulite size of PP crystals. PP transcrystals were formed on the attapulgite particle surface. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2300–2308, 2007  相似文献   

4.
利用湿法研磨法由微米镍粉制得了不同尺寸的片状镍粉;利用X射线衍射仪和扫描电子显微镜研究了研磨参数对片状镍粉形貌和微观结构的影响;测定了产物的室温磁性能.结果表明,球料比和研磨时间是影响片状镍粉形貌的关键因素,片状镍粉的剩磁比和矫顽力都比原料微米镍粉的高.所采用的制备方法具有效率高、成本低且产物形状及磁性能可控的特点,适...  相似文献   

5.
The influence of the thermal history on the morphology and mechanical behavior of PET was studied. The degree of crystallinity (density measurements) and the morphological structure (electron microscopy and small-angle x-ray diffraction) depend on the crystallization temperature. The viscoelastic parameters obtained from the modulus–temperature curves are mainly determined by the morphology of the samples. The glass-transition temperature, Ti, is a function of the crystallinity and the crystallization temperature. It is maximum for a crystallinity between 0.34 and 0.39 for a sample crystallized isothermally between 120 and 150°C. This dependence on crystallization conditions is ascribed to the conformation of the amorphous chain segments between the crystalline lamellae as well as the concentration and the molecular weight of the polymer material rejected during isothermal crystallization. Both factors are supposed to be temperature-dependent. The value of the rubbery modulus is a function of both the volume concentration of the crystalline lamellae and the structure of the interlamellar amorphous regions (chain folds, tie molecules, chain ends, and segregated low molecular weight material). Annealing above the crystallization temperature of isothermally crystallized samples has a marked influence on their morphology and mechanical behavior. The morphological structure and the viscoelastic properties of annealed PET samples are completely different from those obtained with samples isothermally crystallized at the same temperature.  相似文献   

6.
The binary TiFe alloy was synthesized by mechanical alloying (MA) under argon atmosphere at room temperature. The effect of ball to powder weight ratio on the microstructures was characterized by X-ray diffraction (XRD). The effect of milling time on the electrochemical and activation properties was investigated by scanning electron microscope (SEM), galvanostatic charging and discharging, constant potential discharge, and potentiodynamic polarization techniques. Relationships between electrochemical properties, such as polarization, variation of electrochemical discharge capacity, \( \frac{D_{\mathrm{H}}}{a^2} \) ratio exchange current density, and Nernst potential and alloy compositions were evaluated. XRD results showed that with increasing ball to powder weight ratio, the amorphization process is accelerating and powders milled with a ratio of 1:8 have the highest conversion rate to TiFe. SEM observations reveal that particles show cleavage fracture morphology and size distribution is generally normalized. TiFe milled during 40 h was easily activated within 5 cycles and showed the best discharge capacity equal to 147 mAh g?1. A good cycling was observed after 20 cycles at ambient temperature for the alloy milled for 30 h. A correlation between alloy composition, \( \frac{D_{\mathrm{H}}}{a^2} \) report, exchange current density, and Nernst potential on one hand and the variation of the electrochemical discharge capacity during cycling for different milling times on the other hand was observed.  相似文献   

7.
Summary: This work evaluated the influence of the synthesis temperature on the polyaniline (PANI) properties obtained by in-situ polymerization onto a poly (terephthalate) (PET) substrate. The residual mass of these syntheses was dried under vacuum, obtaining PANI powders for each temperature investigated. PANI/PET thin films and PANI powders were characterized by atomic force microscopy (AFM), field emission scanning electron microscopy (FEG-SEM), X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis) and four-point probe techniques. The UV-Vis results showed that the synthesized PANI presents the emeraldine oxidation state. By means of XRD technique, it was possible to verify that the PANI powders present crystalline form. The AFM and FEG-SEM techniques showed that the decrease in PANI/PET and PANI powders electrical conductivity with increasing of the synthesis temperature is related to the polymeric aggregates morphology.  相似文献   

8.
表面活性剂对制备MoS2纳米微粉的影响   总被引:4,自引:0,他引:4  
Mo0_2纳米微粉在催化l‘l、敏感元件[‘·’]及磁记录材料[‘]等方面具有特殊用途,其传统制备方法是通过在高温下用氢还原l’,‘l,利用这种方法制备M。0。纳米微粉、所得产品粒子尺寸较大,比表面积小,且反应在条件苛刻,从而限制了M00。纳米微粉的使用范围.文献曾报导用y一辐照法制备了一系列金属、合金和氧化物的纳米粒子”-‘Q’,这种方法利用水辐解产生的水合电子(efo)作为还原剂,具有在常温常压下进行操作的显著优点,因而受到普遍关注.本实验室l‘’1曾报导通过v一辐照法可制备Moo。纳米非晶,其颗粒尺寸为8-30urn…  相似文献   

9.
We herein report a facile method to prepare the submicron‐sized raspberry‐like polystyrene/polyacrylonitrile particles with anisotropic properties and controllable structure via γ‐radiation‐induced seeded emulsion polymerization under ambient pressure and at room temperature, in which the monodisperse crosslinked styrene‐divinylbenzene‐acrylic acid terpolymer (P(S‐DVB‐AA)) particles were used as seed particles and acrylonitrile (AN) as the second monomer. The influence of the weight ratio of polymer/monomer, the absorbed dose rate, the absorbed dose, and the dispersion medium on the morphology of the as‐prepared particles was investigated. The final products were thoroughly characterized by Fourier transform infrared spectroscopy (FTIR), field‐emission scanning electron microscopy, and transmission electron microscopy. The results showed that the raspberry‐like particles could be fabricated in high yield. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
Thermomechanical properties and crystallization behavior of poly(ethylene terephthalate) (PET) nanocomposites containing layered double hydroxide (LDH) were investigated. To enhance the compatibility between PET matrix and LDH, dimethyl 5‐sulfoisophthalate (DMSI) anion intercalated LDH (LDH‐DMSI) was synthesized by coprecipitation method, and its structure was confirmed by Fourier transform infrared (FTIR) spectrometer and X‐ray diffraction (XRD) measurements. Then, PET nanocomposites with LDH‐DMSI content of 0, 0.5, 1.0, and 2.0 wt% were prepared by in‐situ polymerization. The dispersion morphologies were observed by transmission electron microscopy (TEM) and XRD, showing that LDH‐DMSI was exfoliated in PET matrix. Thermal and mechanical properties, such as thermal stability, tensile modulus, and tensile yield strength of nanocomposites, were enhanced by exfoliated LDH‐DMSI nanolayers. However, elongation at break was drastically decreased with LDH loading owing to the increased stiffness and microvoids. The effect of exfoliated nanolayers, which acted as a nucleating agent confirmed by differential scanning calorimeter (DSC), on the microstructural parameters during isothermal crystallization, was analyzed by synchrotron small‐angle X‐ray scattering (SAXS). It is believed that nanocomposites could be crystallized more easily owing to the increased nucleation sites, which lead to the decrease of average amorphous region size and the long period with the increase of LDH‐DMSI content. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 28–40, 2007  相似文献   

11.
Degummed silk filament was pulverized with a home‐made machine to obtain silk fibroin (SF) powder, and the structure, morphology, and particle size of the SF powder were investigated. The individual spherical particles and aggregates with different morphology of silk fibroin coexisted in water. A waterborne polyurethane (WPU) aqueous dispersion was blended with the SF powder to prepare novel blended materials with improved physical properties. The average particle size and zeta potential of the WPU/SF aqueous dispersions were characterized. The result showed that the WPU/SF dispersion with higher SF content exhibited a less negative zeta potential and a larger average particle size. Furthermore, the effect of SF content on the morphology, miscibility, and mechanical properties of the resulting blended films was studied by scanning electron microscopy, wide‐angle X‐ray diffraction, dynamic mechanical thermal analysis, and tensile testing. The films showed an improved Young's modulus and tensile strength from 0.3 to 33.8 MPa, and 0.6 to 5.2 MPa, respectively, with the increasing of SF up to a content of 26 wt %. The negative charges in the periphery and the small particle size made a good effort on dispersing SF powder into the WPU matrix as small aggregates, and the SF powder led to the efficient strengthening of WPU materials. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 940–950, 2010  相似文献   

12.
Polyethylene terephthalate (PET) is a widely used polymeric material. In this work, the microstructural features before and after the solid‐state polymerization (SSP) of several DuPont PET products were investigated by low‐voltage scanning electron microscopy (LV‐SEM) and atomic force microscopy (AFM). The microstructural features on the cross section of various PET samples included crystallites, voids, boundaries, defects, and amorphous phases. The SEM images revealed layered and stepped structural features at the micron and 10‐micron scales that are highly crystallized at the near‐edge region of the cross section for both linear and branched PET samples after the SSP process. The AFM images demonstrate that the degree of crystallization for the linear and branched PET samples increases gradually from the central area to the edge on the cross section. The linear crystallized PET has a higher degree of orientation than the branched crystallized PET in the 10‐micron to micron scales, but their crystalline structures have no significant differences in the submicron to nanometer scales. The PET crystallization process occurs when the molecular chains in the amorphous phase are aligned and folded to form straight molecular chains at the nanometer scale, and small crystallites are formed. The crystallites aggregate and align together into a polygon rod‐like‐shaped crystallites at the submicron scale. Finally, large crystallites at the micron size are formed that appear on the edge area of the cross section. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 245–254, 2002  相似文献   

13.
Polystyrene (PS) and poly(ethylene terephthalate) (PET) were blended together in the solid state via cryogenic mechanical attrition (CMA) and in the melt through conventional twin‐screw extrusion. CMA PS/PET blend morphologies were characterized both qualitatively and quantitatively through microscopy and thermal analysis. Specifically, CMA reduced the dispersed‐phase domain size and its distribution relative to simple melt extrusion, although not to the extent attained with added chemical compatibilizers. CMA also amorphized the PET phase and depressed the PET cold crystallization rate, which was measured by post‐CMA nonisothermal MDSC analysis. The PET amorphization efficiency and crystallizability for CMA PS/PET blends were the highest and lowest, respectively, at the PS/PET phase inversion. These concomitant phenomena are known to be caused by CMA‐induced PET crystal defect formation and subsequent entropic stabilization. Such behaviors are linked to the enhanced presence of an uncrystallizable rigid amorphous PET phase, and the weight fraction of this rigid amorphous fraction (RAF PET) was quantified and also maximized near the PS/PET phase inversion. Moreover, the increased compatibilization and amorphization efficiencies and reduced PET crystallizability were determined to be interdependent. These studies have verified that CMA of PET with PS is more efficient than extrusion due to the formation of nonequilibrium, metastable morphologies that can be more precisely controlled and better stabilized with an interesting, composition‐dependent interplay between PET crystallizability and the extent of PS/PET compatibilization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1348–1359, 2008  相似文献   

14.
Structure development during drawing was studied for three sets of polyamide‐66 (PA66) fibers with density, optical microscopy, wide‐angle X‐ray diffraction, and Fourier transform infrared spectroscopy. The crystallinity, estimated by density measurements, remained virtually constant with increasing draw ratios, indicating that stress‐induced crystallization did not occur for the PA66 fibers drawn at room temperature, but there was a rapid transformation from a hedrite morphology to a fibrillar one. The absence of stress‐induced crystallization differed from the behavior of polyamide‐6, and this was attributed to the stronger hydrogen bonding between polyamide chains and the higher glass‐transition temperature of PA66. Polarized infrared spectroscopy was used to measure the transition‐moment angles of the vibrations at 936 and 906 cm?1, which were found to be 48 and 60°, respectively. The crystalline orientation was estimated from the band at 936 cm?1, and the increase with an increasing draw ratio was in close quantitative agreement with X‐ray diffraction data; this showed that infrared spectroscopy could be used reliably to measure the crystalline orientation of PA66 fibers. Because we were unable to obtain the transition‐moment angle of the amorphous bands, the amorphous orientation was obtained with Stein's equation. The amorphous orientation developed more slowly than the crystalline orientation, which is typical behavior for flexible‐chain polymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1940–1948, 2002  相似文献   

15.
The structural evolution of nanocrystalline TiO2 milled in different milling atmospheres was studied by X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy. Rietveld refinements of the XRD data showed that high-energy ball milling induced the transformations from anatase to srilankite and rutile at room temperature and ambient pressure. The milling atmospheres with different oxygen partial pressures had an influence on the transformation kinetics of anatase. When the nanocrystalline TiO2 powders were, respectively, milled in oxygen, air and nitrogen atmospheres, the transformation rates of anatases in turn increased with a decrease in oxygen partial pressure of the milling atmosphere, due to the reducing concentration of oxygen vacancies in the milled TiO2 lattice.  相似文献   

16.
Raspberry‐like hybrid nanocapsules with a hydrophobic liquid core were successfully prepared via the copolymerization of styrene, divinylbenzene (DVB), and 4‐vinyl pyridine (4‐VP) in Pickering‐stabilized miniemulsions by using silica particles as the sole emulsifier and hexadecane (HD) as liquid template. When compared with conventional Pickering miniemulsions and Pickering suspensions, the colloidal stability of the current systems is much more sensitive to the variation of reaction parameters such as pH, size, amount of silica particles, and content of 4‐VP. The systems without coagulum were only obtained in a narrow pH range at around 9.5 and by using 12 nm silica particles as emulsifier. The formation of well‐defined raspberry‐like capsules was confirmed by transmission electron microscopy (TEM) and high‐resolution scanning electron microscopy (HRSEM). The stable attachment of silica particles on the surface of hybrid particles was verified by centrifugation and subsequent characterizations, such as Fourier transform infrared spectroscopy, TEM, and HRSEM. The influence of pH and weight content of HD, DVB, and 4‐VP on the particle morphology was extensively investigated. Interestingly, the particle morphology strongly depends on the particle size. When compared with the organic surface‐active surfactant, the formation of capsule morphology could be promoted by the application of silica particles taking advantage of their surface inactivity. The formation mechanisms of capsules/solid particles are discussed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
This paper describes a simple synthetic route for the synthesis of hexagonal boron nitride (h-BN) powders with high specific surface area, in which BBr3, NH4Cl and Al powders are used as starting materials. The structure and composition of the powders were characterized by electron diffraction, Fourier transformation infrared spectroscopy and X-ray photoelectron spectroscopy in the selected area. X-ray diffraction shows wide peaks of crystalline h-BN with the particle size on the nanometer scale, and transmission electron microscopy reveals that the products have a novel spongy morphology. Silver nanoparticles loaded h-BN sponges were prepared via a one-step synthesis method. Different reaction conditions for the formation of h-BN sponges were also investigated.  相似文献   

18.
The nanoscale structural changes of crystalline cellulose by mechanical milling was studied by high-resolution microscopy (AFM, SEM, TEM). We examined influence of environment [dry, water, silicone oil (PDMS)] on cellulose milling, finding their characteristic effects on microscopic morphology of the products. Dry milling of cellulose gave aggregated globular particles with fast decrystallization. Milling with water or PDMS caused partial dispersion of nanofibers. Milling with PDMS formed micro-platelets <1 µm thick with slight decrystallization. Remarkably, nanoscale particles isolated from PDMS-milled cellulose by sonication in ethanol contained cellulose nanosheets, typically 0.1–10 µm wide and 4.2 nm thick, apparently formed by monolayer association of elementary fibrils. TEM and electron diffraction revealed crystalline nature of nanosheets, with specific orientation of (110) plane or (200) plane perpendicular to the sheet plane. A possible mechanism of the nanosheets formation is proposed, in which the elementary fibrils are aligned parallel by mechanical impacts.  相似文献   

19.
Polyamide 6 (PA6)/multi‐walled carbon nanotubes (MWCNT) nanocomposites were produced by diluting a masterbach containing 20 wt % nanotubes using melt mixing. The influence of the addition of well dispersed MWCNT (as indicated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM)) on the thermal transitions, and crystallization behavior of the PA6 matrix is investigated. Differential scanning calorimetry (DSC) results show a reduction in heat capacity jump at the glass transition which is interpreted by an immobilized interfacial layer near the nanotubes. Furthermore, both DSC and X‐ray diffraction (XRD) measurements indicate that nanotubes favor the formation of the α crystalline form of PA6. These findings are correlated with the observed improvement of the storage modulus as revealed by dynamic mechanical thermal analysis (DMTA). Additionally, a new crystallization peak appears when MWCNT are added, and is attributed to the formation of a different morphology of the same type crystallite around the nanotubes walls (trans‐crystallinity). Finally, water sorption measurements show an increase of water content, normalized to the amorphous polymer fraction, in the nanocomposites. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 764–774, 2009  相似文献   

20.
Amorphous iron(III) oxide--a review   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号