首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A simplified model for heat transfer based on thermal conduction is used to calculate the radial gas temperature distribution inside a semi-enclosed, commercial graphite tube furnace used for atomic absorption spectrometry. In the absence of a forced convective flow of a purge gas, the gas temperature inside the graphite furnace during its heating is lower than the wall temperature. After the wall temperature has attained a steady-state value, the gas temperature approaches the wall temperature and the radial temperature gradient in the gas decreases. The difference between the wall temperature and the gas temperature depends on the temperature program used, the thermal properties of the purge gas, and the atomizer geometry. The residence time of relatively volatile analyte elements is largely controlled by expulsion when wall atomization at high heating rates and high atomization temperatures are used. Analytical sensitivities are often enhanced by vaporizing the analyte into a gas having an approximately constant temperature.  相似文献   

2.
A model of the temperature distribution in the tube wall and in the gas phase of an anisotropic pyrolytic graphite furnace heated by capacitive discharge technique is proposed. The heat loss from the graphite tube by conduction via the contact electrodes to the water-cooled electrode supports and by radiation to its surroundings are the main processes condidered. In calculating the gas temperature, heat transfer by conduction from the tube wall to the gas phase is the only mode taken into account. The instantaneous temperature of a graphite furnace is expressed in the form of a differential equation. A finite-difference form of the differential equation is used in a computer program to calculate the temperature at each time step. The computer simulation offers the capability of studying the factors affecting the characteristics of temperature/time profiles and the distribution of surface and gas phase temperatures of the furnace. The results of simulation studies of the effect of the capacitance and the initial voltage of the capacitor bank on the heating characteristics of the furnaces show a reasonable agreement with those obtained experimentally.  相似文献   

3.
The predictions of a theoretical model, embodied in a computer program, describing the heating characteristics of the furnace surface and the gas phase of an anisotropic pyrolytic graphite furnace heated by the capacitive discharge technique are compared with the experimental results obtained by optical pyrometry and by two-line atomic absorption spectrometry, respectively. The surface temperature gradient around the circumference of the type 1 furnace and along the optical axis of the type 3 furnace are calculated and compared with the measured temperatures. The weighted-average of the theoretically predicted gas temperature is in reasonable agreement with the effective vapour temperature measured by two-line atomic absorption method. The heating rate of the furnace does not have a significant effect on the temperature distribution of either the furnace surface or the gas phase. The effect of the difference in the temperature distribution of the type 1 and type 3 furnaces on the atomic absorption signals is also discussed.  相似文献   

4.
The direct determination of chromium in urine by electrothermal atomic absorption spectrometry (ETAAS) using graphite tubes modified with tungsten is proposed. Modification of the graphite is made by tungsten electrodeposition over the whole surface atomizer followed by carbide formation by heating the tube inside its own furnace. For tungsten electrocoating, the graphite tube and a platinum electrode were connected to a power supply as cathode and anode, respectively, and immersed in a solution containing 2 mg of W in 0.1% v/v HNO3. Then, 5 V was applied between the electrodes during 20 min for tungsten electrodeposition over the whole atomizer. A SpectrAA 220 Varian atomic absorption spectrometer equipped with a deuterium background corrector was used throughout. Undiluted urine (20 μl) was delivered over the tungsten-treated tube and the chromium-integrated absorbance was measured after applying a suitable heating program with maximum pyrolysis at 1300 °C and atomization at 2500 °C. With electrodeposited tungsten modifier, the tube lifetime increased up to four times when compared to previous published methods for Cr determination in urine by ETAAS, reaching 800 firings. Method detection limit (3 S.D.) was 0.10 μg l−1, based on 10 integrated absorbance measurements of a urine sample with low Cr concentration. Two reference materials of urines (SRM 2670) from National Institute of Standards and Technology (NIST) were analyzed for method validation. For additional validation, results obtained from eight human urine samples were also analyzed in a spectrometer with Zeeman effect background correction.  相似文献   

5.
The time behavior of the temperatures of cylindrical graphite atomizers have been measured as a function of the distance from the tube center. From these measurements the evolution of the axial temperature distribution during a ramp-hold-step was evaluated. Starting at a ramp rate of 200°C s?1, deviations of the distribution from the equilibrium function has been observed. For ramp rates above 1000°C s?1, a nearly constant temperature over the largest part of the tube has been found during the ramp step when the heating started at ambient temperature. The transition of this distribution into the equilibrium function can be described satisfactorily by solving the differential equation for heat conduction.  相似文献   

6.
Electrothermal atomic absorption spectrophotometry of Al in a tungsten coil atomizer was evaluated and applied for its determination in hemodialysis fluid. The system was mounted on a Varian Spectra AA-40 spectrophotometer with continuum background correction and all measurements, in peak height absorbance, were done at 309.3 nm. The purge gas was a mixture of 90% Ar plus 10% H(2). Observation height, gas flow, drying, pyrolysis and atomization steps were optimized. The heating program was carried out by employing a heating cycle in four steps: dry, pyrolysis, atomization and clean. The determination of Al in hemodialysis solutions was performed by using a matrix-matching procedure. Al in hemodialysis solutions was determined by TCA and by electrothermal atomization with a graphite tube atomizer. There is no differences between results obtained by both methods at a confidence level of 95%. The characteristic mass of Al by using the TCA was 39 pg and the detection limit was 2.0 mug l(-1).  相似文献   

7.
A CRA-63 atomizer has been modified by replacement of the conventional center supports with 2-pronged supports that hold the atomizer tube at both ends. This arrangement allows current to flow only across the atomizer ends. The center is heated by conduction. Large initial temperature differences (750–900 K) between the sample-containing center and the ends eliminates or decreases the interferences on Pb normally observed with this atomizer. Six chloride and one sulfate matrices were studied.Longer atomizers and higher power produced the largest temperature differences and, therefore, the best lead recoveries. At a given length, recovery eventually plateaued while the signal for lead in the absence of matrices decreased when heating power was further increased. It was concluded that further improvements would require longer tubes and a combination of end and center heating.The importance of considering interferent/analyte ratios in interpreting recovery data was examined for the interference of MgCl2 on lead.  相似文献   

8.
The methodology of simultaneous multi-element electrothermal atomic absorption spectrometry (ETAAS-Electrothermal Atomic Absorption Spectrometry) stipulates rigid requirements to the design and operation of the atomizer. It must provide high degree of atomization for the group of analytes, invariant respective to the vaporization kinetics and heating ramp residence time of atoms in the absorption volume and absence of memory effects from major sample components. For the low resolution spectrometer with a continuum radiation source the reduced compared to traditional ETAAS (Electrothermal Atomic Absorption Spectrometry) sensitivity should be, at least partially, compensated by creating high density of atomic vapor in the absorption pulse. The sought-for characteristics were obtained for the 18 mm in length and 2.5 mm in internal diameter longitudinally heated graphite tube atomizer furnished with 2-4.5 mg of ring shaped carbon fiber yarn collector. The collector located next to the sampling port provides large substrate area that helps to keep the sample and its residue in the central part of the tube after drying. The collector also provides a “platform” effect that delays the vaporization and stipulates vapor release into absorption volume having already stabilized gas temperature. Due to the shape of external surface of the tube, presence of collector and rapid (about 10 °C/ms) heating, an inverse temperature distribution along the tube is attained at the beginnings of the atomization and cleaning steps. The effect is employed for cleaning of the atomizer using the set of short maximum power heating pulses. Preparation, optimal maintenance of the atomizer and its compliance to the multi-element determination requirements are evaluated and discussed. The experimental setup provides direct simultaneous determination of large group of element within 3-4 order concentration range. Limits of detection are close to those for sequential single element determination in Flame AAS with primary line source that is 50-1000 times higher than the limits obtainable with common ETAAS (Electrothermal Atomic Absorption Spectrometry) instrumentation.  相似文献   

9.
X.Q. Fang  C. Hu 《Thermochimica Acta》2007,453(2):128-135
In this study, the multiple scattering of thermal waves and temperature distribution resulting from a subsurface sphere in a semi-infinite exponentially graded material are investigated, and the analytical expression of the temperature at the surface of the graded material is obtained. Non-Fourier heat conduction equation is applied to solve the temperature at the surface, and the image method is used to satisfy the semi-infinite boundary condition of graded material. The thermal wave fields are expressed using wave function expansion method, and the expanded mode coefficients are determined by satisfying the boundary condition of the sphere. According to the wave equation of heat conduction, a general solution of scattered thermal waves is presented for the first time. The temperature distribution and phase difference at the surface of the semi-infinite material with different parameters are graphically presented. Analyses show that the hyperbolic heat conduction equation cannot be regarded as a continuation of the parabolic heat conduction equation at very short time scale. The effects of the incident wave number, the structural and physical parameters on the distribution of temperature and phase difference in the semi-infinite material are also examined.  相似文献   

10.
The technique of shadow spectral imaging was used to investigate dynamics of formation and dissipation of Ag, In, Ga, Bi, Mn, Cu and Tl atomic layers in a transversely heated graphite tube atomizer (THGA) with and without integrated platform under gas-stop and gas-flow conditions. It is shown that non-uniform heating of the tube walls and platform surface in the radial cross section is the main reason for analyte transfer from atomizer bottom to less heated sides of the tube and platform before atomization temperature is reached. This transfer in the atomizer transverse cross section can be an additional factor that reduces matrix interferences in the THGA. In all the investigated cases, the atomic absorbing layers are not spatially uniform. Absorbance gradients grow up to 0.2 mm 1 even in the case of chemically inert silver atomization. Inverse atomization of In, Bi, Ga and Tl when atoms first appear in the atomizer's upper part was detected in THGA with platform. The effect of the internal gas flow on the spatial structure of analyte atoms is less pronounced in the transversely heated atomizer as compared to the end-heated furnaces.  相似文献   

11.
A flow injection system was coupled to a tungsten coil electrothermal atomizer (150 W) for on-line separation and preconcentration of lead based on its electrochemical reduction on the atomizer surface. The electrochemical cell is built up inside the furnace by using a Pt flow-through anode and the atomizer itself as the flow-through cathode. The manifold and the tungsten coil power supply were controlled by a computer running a program written in Visual Basic, which was utilized in synchronism with the original software of the atomic absorption spectrometer. The flow-through anode (50 mm long, 0.7 mm i.d.) was inserted in tip of the autosampler arm by replacing the last section of the PTFE sample delivering tube. The tungsten coil atomizer and the counter electrode were easily connected to a d.c. power supply. An enrichment factor of 25 was obtained for lead after a 120-s electrodeposition for a sample flowing at 1.0 ml min−1. The method detection limit was 0.2 μg l−1 Pb and the R.S.D.<5% (n=10 for 5 μg l−1 Pb). Up to 2% m/v NaCl or KCl and 5% m/v CaCl2 or MgCl2 did not interfere on the separation and atomization of 5 μg l−1 Pb.  相似文献   

12.
由傅里叶导热定律结合Tools-Narayanaswamy-Moynihan(TNM)松弛模型提出了一种计算聚合物样品内温度分布的方法.对PS的计算结果表明温度梯度随样品厚度、升温速率增大而增大,对于1.0 mm的PS以1 K/min降温后再以10 K/min升温时样品内部最大温差为0.882 K.在此基础上提出了不同样品厚度、不同热处理条件下聚合物测定比热的计算方法,结果表明计算结果与实测数据基本一致.  相似文献   

13.
Ohta K  Isiyama T  Yokoyama M  Mizuno T 《Talanta》1995,42(2):263-267
Electrothermal atomic absorption spectrometry (ETA-ASS) of gold with a molybdenum tube atomizer has been investigated. A sensitive ETA-AAS method was developed. The gold absorption signal became higher with the heating rate of the tube atomizer and as the ratio of hydrogen in the argon purge gas decreased. The optimal heating rate and the optimal gas flow rate were 5.5 C/msec and Ar 480 ml/min + H(2) 20 ml/min, respectively. The absolute characteristic mass (the mass of element giving 0.0044 abs.) of gold by the atomizer was 1.8 pg and the detection limit was 130 pg/ml (3S/N). These values were > 10 times better than those obtained with graphite atomizers, ICP and ICP-MS. The interferences caused by large amounts of interferents were evaluated. The addition of thiourea served to eliminate severe interferences. The recovery of spiked gold in biological materials was in the range of 101-106%.  相似文献   

14.
An applied fluid-dynamics model of the non-stationary flow in a long multilayer-insulated high-pressure subsea gas pipeline was developed. Instead of a complex partial differential heat conduction equation, which represents the heat flux between the flowing gas and the environment in the energy balance equation, the model uses a first-order ordinary differential equation. The applied model allows one to significantly increase the speed of numerical computation of the fluid-dynamics parameters of the gas flow in the pipeline, which is necessary for multivariate computations in design and operation of gas pipelines.  相似文献   

15.
One of the successful methods for the determination of organometallic compounds is the combination of Gas Chromatography-Atomic Absorption Spectrometry (GC-AAS). The atomizer of AAS was connected with the column of GC by a transfer tube. Three types of the atomizer were reported as flame burner,electrothermal quartz tube and graphite furnace. A large amount of gas or electric energy was required to produce a high temperature for the atomization of analytes, A microflame atomizer of GC-AAS was developed in this paper to circumvent above problems. The volume of the atomizer is one-fifth of the normal flame burner, and a hydrogen gas was used as the carrier gas (35ml/min) and the fuel gas for the atomization of analytes.  相似文献   

16.
Due to dynamic nature of processes taking place during the experiment (chemical reaction and physical processes, heat flow, gas flow, etc.) the results obtained by thermal methods may considerably depend on the conditions used during the experiment. Therefore, whenever the results of thermal analysis are reported, the experimental conditions used should be stated. In this paper we have studied the heat transfer from the furnace to the sample and through the sample during dynamic mechanical analysis measurements. Numerical modelling of the heat transfer was done using an own computer program based on the heat conduction equation, solved numerically applying the finite difference methods. The calculated values of the thermal lag between the furnace and the sample were compared with the values experimentally determined on samples of a composite polymeric energetic material (double-base rocket propellant). Also, the temperature distribution within the sample as a function of the heating rate was analysed using the same numerical model. It was found out that using this model and temperature dependent heat transfer coefficient, experimentally obtained values of the thermal lag between the furnace and the sample can be satisfactory described. It was also shown that even at slow heating rates, such is, e.g. 2 °C min−1, the thermal lag between the furnace and the sample can reach several degrees, while the thermal gradient within 3-mm thick rectangular sample can reach 0.4 °C.  相似文献   

17.
18.
Atomization characteristics of chromium have been studied by electrothermal atomic absorption spectrometry with a molybdenum tube atomizer. The appearance temperature (Tapp) of chromium nitrate was 1300°C. TheTappwas independent of the heating rate of atomizer, but the temperature at the peak of the Cr AA signal increased with the heating rate. A sensitive absorption chromium signal was obtained in pure argon purge gas. The chromium signal decreased as the ratio of hydrogen in the purge gas increased. The optimal gas flow rate was Ar 480 ml min−1+ H220 ml min−1because of the avoidance of oxidation of the atomizer. The absolute characteristic mass (the mass of element giving 0.0044 abs.) of chromium by the atomizer was 0.35 pg and the detection limit was 23 pg ml−1(3S/N). The interferences caused by large amounts of interferents were evaluated. The addition of thiourea served to eliminate the severe interferences. The accuracies of the recommended method were considered almost satisfactory for the determination of chromium in biological materials, compared with the certified values of NIST materials. The recovery of spiked chromium in biological materials was in the range from 93.5 to 102%.  相似文献   

19.
The heating of a single alumina particle (1 mm diameter) was experimentally investigated using a thermal argon plasma flow confined in a tube. Two kinds of tube were used; a porous ceramic tube (PCT) with a transpiration gas and a water-cooled copper tube (WCT). The temperature and velocity of the particle heated in a thermal plasma flow were measured at the exit of the tube by the calorimetric and optical method, respectively. The plasma temperature and velocity at the exit of the tube were also measured. The heating rate of a particle was estimated from these experimental results. According to the results, the heating rate of a particle is higher for PCT with a small flow rate of transpiration gas than for WCT. Therefore, PCT is effective for the particle heating.Notation A cross-sectional area - Bi Biot number - C constant - c p specific heat - D diameter - h heat transfer coefficient - k thermal conductivity - L length of tube - l distance for heat conduction loss - M mass - m flow rate of plasma jet gas - Nu Nusselt number - P pressure - Pr Prandtl number - Q heat transfer rate - Q p total heat delivered to the particle - r radial distance - T plasma temperature - T p particle temperature - T temperature rise - t time - U plasma velocity - U p particle velocity - x axial distance - density - viscosity - residence time of the particle - a atmospheric (static) - Ar argon - b bulk - c centerline - cond conduction - cu probe - f film - i entrance of the tube - free stream - loss heat transferred to the wall of the tube - p particle - r room - rad radiation - t total - W wall, sphere surface - wa water - 0 exit of the tube  相似文献   

20.
When studying crytalline substances and liquids in sealed off glass ampoules by differential thermal analysis the melting ranges but not the heat of evaporation of the liquids and fused substances are found, because inside the glass ampoule, there will always be the vapour pressure equillibrium which corresponds to the temperature. With liquids undergoing decomposition, it is possible to measure the range and heat of decomposition. Given a suitable quantity inside the ampoule the critical temperature, e.g., of water of ethanol can be measured for non-decomposing liquids. The measuring effect is based on the pronounced change of the liquid's specific heat at the critical temperature.Fundamental studies of the measurement of critical temperatures of liquids were carried out by the turn of the century. One the methods reported is the meniscus method, optimal measurement of the critical temperature, which comprises a liquid being filled into a glass tube which is then sealed by melting. The glass tube is heated while observing the meniscus. Its rise means that the critical volume has been exceeded, while a drop means that it has not yet been reached. The conditions are only met when that volume of liquid has been filled into the tube at which the meniscus neither rises nor falls on heating but rather remains, e.g. at mid level of the tube until it disappears. The tube contains the critical volume at the critical density when the critical temperature is reached. The critical pressure is then present. These conditions are obtained when the meniscus disappears and the liquid completely goes over into the vapour phase.The melting range (and the latent heat of fusion) are found when investigating a crystalline material under normal pressure by differential thermal analysis. Given a suitable arrangement the boiling temperature and, in rough approximation, the heat of evaporation are also found (Fig.1). The latent heat of fusion is found again when carrying out the same measurement in a closed system (glass tube sealed by melting). The heat of evaporation can no longer be measured since the vapour pressure equilibrium coresponding to the given temperature is present in the glass tube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号