首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The complexes C5H5Rh(PMe3)CS2(II) and C5H5Rh(PMe2Ph)CS2(III) are formed in excellent yields in the reaction of C5H5Rh(C2H4)PR3(PR3 = PMe3, PMe2Ph) with CS2 in benzene. The CS2 ligand in II and III is dihapto-bonded and at least in III is rigid. II reacts with Cr(CO)5THF and C5H5Mn(CO)2THF to give the binuclear complexes C5H5(PMe3)Rh(SCS)Cr(CO)5 (IV) and C5H5- (PMe3)Rh(SCS)Mn(CO)2C5H5 (V) in which the CS2 molecule bridges two different metal atoms. In the reaction of C5H5Rh(C2H4)PMe3 and CS2 under certain conditions a second product of C5H5Rh(PMe3)C2S4 (VI) is formed. The cyrstal structure shows that in this complex a five-membered RhSCSC heterocyclic ring is present.  相似文献   

2.
The thermal decomposition reactions of the M(CO)nCl2L2 type complexes M: W, Mo; n: 2, 3; L: P(C6H5)3, As(C6H5)3, OP(C6H5)3 were studied. It was found that the tricarbonyl complexes split off the CO groups in 2+1 mole ratio, and after that the L ligands in a multi-step reaction. The splitting-off of the CO ligands might be a one-step (OPph3), or a two-step process (Pph3) in the case of the dicarbonyl compounds. The following thermal stability order is given: W>Mo; Pph3>Asph3>OPph3; dicarbonyl ≈ tricarbonyl (ph - C6H5).  相似文献   

3.
C5H5Co(PMe3)CS2 (IV) is formed in practically quantitative yield in the reaction of C5H5Co(PMe3)2 (I) or the heterobinuclear complex C5H5(PMe3)Co(CO)2Mn(CO)C5H4Me (III) with CS2. The crystal structure shows that the carbon disulfide bonds as a dihapto ligand through the carbon and one sulfur atom (S(2)) (CoC = 1.89, CoS(2) = 2.24 Å, S(2)CS(1) = 141.2°). The two CS bond lengths in IV (CS(2) = 1.68, CS(1) =1.60 Å) are greater than in free CS2 (1.554Å) which is in agreement with the strong π-acceptor character of h2-CS2 as shown in the spectroscopic data. IV reacts with Cr(CO)5THF and C5H5Mn(CO)2THF to give the complexes C5H5(PMe3)Co(SCS)Cr(CO)5 (V) and C5H5(PMe3)Co(SCS)Mn(CO)2C5H5 (VI) respectively, in which the sulfur atom S(1) that is not bound to cobalt coordinates to the 16-electron fragments Cr(CO)5 and Mn(CO)2C5H5. The spectroscopic data of IV, V and VI are discussed.  相似文献   

4.
Complexes of the general formula [Cl2Fc] nML, (Cl2Fc = C1C5H4FeC5H3Cl; ML = Fe(CO)2C5H5, AuP(C6H5)3, Mn(CO)5 or Ir(CO)[P(C6H5)3]2 when n = 1; ML = Ti(C5H5)2 when n = 2) have been prepared from a salt elimination reaction between 1,1′-dichloro-2-lithioferrocene and transition metal halide complexes. Spectroscopic properties of the compounds are reported. The titanium complex exists in meso and dl forms.  相似文献   

5.
The possible noncovalent lone pair‐π/halogen bond (lp···π/HaB) complexes of perhalogenated unsaturated C2ClnF4?n (n = 0–4) molecules with four simple molecules containing oxygen or nitrogen as electron donor, formaldehyde (H2CO), dimethyl ether (DME), NH3, and trimethylamine (TMA), have been systematically examined at the M062X/aug‐cc‐pVTZ level. Natural bond orbital (NBO) analysis at the same level is used for understanding the electron density distributions of these complexes. The progressive introduction of Cl atom on C2ClnF4?n influences more on the lp···π complexes over the corresponding HaB ones. Within the scope of this study, gem‐C2Cl2F2 is the best partner molecule for lp···π interaction with the simple molecules, coupled with the greatest interaction energy (IE) and second‐order orbital interaction [E(2) value], whereas C2F4 is the poorest one. The C2Cl3F·H2CO and C2Cl4·H2CO complexes exhibit reverse lp···π bonding, while the Z/E‐C2Cl2F2·NH3, C2Cl3F·NH3 and C2Cl4·NH3 complexes perform half‐lp···π bonding according to the NBO analysis. The lp···π interaction involving the oxygen/nitrogen and the π‐hole of C2ClnF4?n overwhelms the HaB involving the oxygen/nitrogen and the σ‐hole of the Cl atom. The electron‐donating methyl groups contribute significantly to the two competitive interactions, therefore, DME and TMA engage stronger in the partner molecules than H2CO and NH3. Our theoretical study would be useful for future experimental investigation on noncovalent complexes. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
Novel optical ligands bis(menthane) (H2L1), pinano-para-menthane (H2L2), and carano-para-menthane (H2L3) propylenediaminodioximes are obtained. Diamagentic Co(III) complexes of the composition Co(HL1)Cl2 (I), Co(HL2)Cl2 (II), Co(HL3)Cl2 (III), and Co(HL4)Cl2 · H2O(IV) are synthesized by reactions of CoCl2 with H2L1, H2L2, H2L3 and bis(carane) propylenediaminodioxime (H2L4) in ethanol in air. The crystal and molecular structures of compound I is determined by X-ray diffraction analysis. The crystals are monoclinic with the unit cell parameters a = 7.8385(3) Å, b = 11.4074(6) Å, c = 14.9509(6) Å, β = 104.278(2)°, V = 1295.57(10) Å3, Z = 2, ρ(calcd) = 1.367 g/cm3, F(000) = 564, M = 533.41, space group P21. The crystal structure of complex I consists of individual mononuclear molecules. The Co3+ ion coordinates four N atoms of tetradentate cycle-forming anionic ligand and two Cl atoms. The coordination polyhedron of Cl2N4 is a distorted octahedron. The 13C and 1H NMR spectra of the complexes synthesized confirm coordination of four N atoms of a ligand.  相似文献   

7.
The reaction of trans-[RhCl(CO)(DPM)]2 (DPM = Ph2PCH2PPh2) with CS2 yields an interesting series of CS2 complexes culminating in the condensation of two CS2 molecules yielding the unusual, asymmetric species [Rh2Cl2(CO)- (C2S4)(DPM)2]. This novel C2S4 species is also produced in the reaction of [Rh2Cl2(μ-CO)(DPM)2] with CS2. The structural determination of the C2S4 complex indicates that the C2S4 moiety bridges the rhodium atoms such that it forms a RhSCSC metallocycle with one rhodium atom while simultaneously bonding through a sulfur atom to the second rhodium atom forming a RhCSRh metallocycle. A scheme for the reactions of the above complexes with CS2 is presented.  相似文献   

8.
Dehalogenation of perhalogenated cyclohexanes C6Cl6F6, 1-azacyclohexenes C5Cl4F5N and bicyclo[4.4.0]dec-1(6)-enes C10Cl8F8 in the vapour phase over iron filings at 350-500 °C and in solution with Zn and additivities (Cu, NiCl2·6H2O + bpy) at 80 °C (heterogeneous reaction) or with P(NEt2)3 at 20 °C (homogeneous reaction) was studied. In all cases, perfluoroarenes, chloroperfluoroarenes and dichloroperfluoroarenes (benzenes, naphthalenes and pyridines) were obtained in good overall yield.  相似文献   

9.
The reactions of sodium ethoxide in ethanol with various fluoroaromatics, C6F6?nHn, C6F5?nHnNO2, C6F5X (X = CF3, C6F5, COCH3, CH2Br), C6Cl6 and mH2C6Cl4 have been studied. Partial substitution of the aromatic halogen was observed. The new products have been characterized by elemental analysis, NMR (H?1 and F?19), infrared and mass spectroscopy.  相似文献   

10.
Complexes of the type LnMPRCl2 (LnM  (CO)5Cr or C5H5(CO)2Mn), on treatment with C5H5Co(CO)2, undergo dehalogenation giving mixed metal clusters, LnMPR[CoC5H5(CO)]2. The molecular structure of (C5H5)3Co2Mn(CO)PCH2C6H5 is described. Monoclinic, space group P21/c with a 9.579, b 14.338, c 17.650 Å, Z = 4.  相似文献   

11.
A series of MoHg and WHg bonded complexes [RHgM(CO)3Cp], (R = 2,4,6-C6H2Cl3,2,3,5,6-C6,HCl4 and C6Cl5) have been prepared from ClHgR and the salts Na[M(CO)3)Cp]. When R contains only one ortho chlorine atom (R = 2,5-C6H3Cl2, 2,3,4-C6H2Cl3 and 2,3,4,5-C6HCl4) a symmetrisation process occurs to give the corresponding HgR2 and Hg[M(CO)3Cp)22. These results indicate that steric effects are very important in the formation of compounds containing molybdenum- or tungsten—mercury bonds. Complexes of the type [(C6Cl5)HgM(CO)2(PPh3)Cp] (M = Mo and W) are obtained from [(C6Cl5)HgM(CO)3Cp] and PPh3 in boiling ethanol.  相似文献   

12.
Eight diorganotin(IV) complexes of salicylaldehyde isonicotinylhydrazone (H2SalN) R2Sn(SalN) R = t-Bu 1, Ph 2, PhCH23, o-ClC6H4CH24, p-ClC6H4CH25,m-ClC6H4CH26,o-FPhCH27, p-FC6H4CH28 were prepared. All complexes 1-8 have been characterized by elemental, IR, 1H, 13C and 119Sn NMR analyses. The crystal structures of H2SalN and complex 1 were determined by X-ray crystallography diffraction analyses. Studies show that H2SalN is a tridentate planar ligand. For complex 1, the tin atom lies in this plane and forms a five- and six-membered chelate ring with the tridentate ligand. A comparison of the IR spectra of the ligand with those of the corresponding complexes, reveals that the disappearance of the bands assigned to carbonyl unambiguously confirms that the ligand coordinate with the tin in the enol form.  相似文献   

13.
The photolysis of [L2Pt(C2H4)] (L = PPh3, P(p-C6H4CH3)3 complexes in halocarbon solvents (CH2Cl2, CH2Br2) gives C2H4 and the coordinatively unsaturated species [L2Pt]. Photolysis of platinum metallacycles [L2Pt(CH2)4] (L = PPh3, P(n-Bu)3) generates alkanes, alkenes and [L2Pt]. The [L2Pt] centers are very reactive, and under prolonged photolysis undergo oxidative addition of CH2Cl2 forming the trans-[L2Pt(CH2Cl)Cl] complexes. Under appropriately controlled conditions the trans complexes isomerize to cis species before bimolecular C2H4 elimination occurs and [L2PtCl2] is formed as the final product. The oxidative addition-reductive elimination mechanism is discussed on the basis of spin-trapping experiments, quantum yield values, and the sensitivity to radical inhibitors and to solvents.  相似文献   

14.
Syntheses of Oxovanadium(V) Halide Complexes Stabilized with Tripodal Oxygen Ligands LR = [η5‐(C5H5)Co{PR2(O)}3], R = OMe, OEt The sodium salts of the tripodal oxygen ligands LR = [η5‐(C5H5)Co{PR2(O)}3] (R = OMe, OEt) react with the oxovanadium halides V(O)F3 and V(O)Cl3 to yield deep red compounds of the type [V(O)X2LR]. Halide exchange reactions with [V(O)Cl2LOMe] und [V(O)F2LOMe] aiming at the preparation of the analogous bromide complex [V(O)Br2LOMe] led to the isomer [VO(LOMe)2][V(O)Br4]. The crystal structure of [V(O)Cl2LOMe] has been determined by single crystal x‐ray diffraction. The compound crystallizes in the monoclinic space group P21/n with a = 9.6332(8), b = 15.0312(11) and c = 15.3742(12)Å, β = 100.181(8)°. The coordination around vanadium is distorted octahedral.  相似文献   

15.
Summary The rhodium(I) carboxylates,trans-RhO2CR(CO)(PPh3)2 (R = C6F5, C6Cl5,p-HC6F4,m-HC6F4,o-HC6F4,p-McOC6F4, 4,5-H2C6F3, 3,5-H2C6F3, or 2,6-F2C6H3, have been prepared by reaction of RhH(CO)(PPh3)3 with the appropriate polyhalogenobenzoic acids in ethanol and/or by reaction oftrans-RhCl(CO)(PPh3)2 with the appropriate thallous carboxylates in benzene. Decarboxylations with formation of polyhalogenoarylrhodium(I) compounds,trans-RhR(CO)(PPh3)2 (R = C6F5, C6Cl5,p-HC6F4,m-HC6F4,p-MeOC6F4, 4,5-H2C6F3 or 3,5-H2C6F3), have been achieved either by decomposition of the corresponding rhodium(I) carboxylates in pyridine or by reaction oftrans-RhCl(CO)(PPh3)2 and the thallous carboxylates in pyridine, but the derivatives R =o-HC6F4 or 2,6-F2C6H3 could not be obtained by this method. The rate of decarboxylation decreased in the sequence R = C6F5 >p-MeOC6F4 >p-HC6F4 >m-HC6F4 > 4,5-H2C6F3 > 3,5-H2C6F3.Part 1, ref. 10.Preliminary communication, ref. 9.  相似文献   

16.
The interaction of bisperhalophenyl aurates [AuR2]? (R?=?C6F5, C6F3Cl2, and C6Cl5) with the closed-shell Ag+, Cu+, and Tl+ ions has been studied theoretically and compared with the experimentally known X-ray diffraction crystal structures. Initially, the aurates have been fully optimized at MP2 level of theory in a D 2h symmetry. The analysis of the basicity of the three aurates [AuR2]? (R?=?C6F5, C6F3Cl2 and C6Cl5) against Ag+ ions in a C 2v symmetry has been calculated in point-by-point bsse-corrected interaction energy analysis at HF and MP2 levels of theory. Taking into account the experimental observation of additional interactions between the heterometals and C ipso atoms at the perhalophenyl rings or halogen atoms at the ortho position of the perhalophenyl rings, dinuclear models of the type [AuR2]?···Ag+ (R?=?C6Cl5, and C6F5); [AuR2]?···Cu+ (R?=?C6F5, and C6Cl5) and [AuR2]?···Tl+ (R?=?C6F5, and C6Cl5) with a C 2v , C 2 , and C s symmetries have been optimized at DFT-B3LYP level. The interaction energies have been computed through bsse-corrected single point HF and MP2 calculations. The energy stabilization provided and the heterometal preference have been analyzed and compared with the experimental results.  相似文献   

17.
Pseudo-spectral dipole oscillator strengths and excitation energies, which are discrete representations of the original continuous dipole oscillator-strength distributions (DOSDs), are presented for the ground-state SO2, CS2 and OCS molecules. These pseudo-DOSDs, together with previously published pseudo-DOSDs, are used to evaluate the dipole—dipole and triple-dipole dispersion-energy coefficients for all the two- and three-body interactions between SO2, CS2 and OCS and between these molecules and H2, N2, O2, NO, N2O, H2O, NH3, CO, CO2, CH4, C2H6, C4H10 and C6H14, with an estimated uncertainty of 1–2%. The importance of results of this type is discussed briefly.  相似文献   

18.
A redetermination of the disproportionation/combination ratio for n–C3F7 and C2H5 radicals gives a value of Δ(n–C3F7, C2H5) = 0.13 ± 0.01, independent of the temperature. The radicals were produced by the photolysis of n–C3F7COC2H5. The previous determinations of this ratio are discussed and are found to be largely incorrect. The values for Δ(CF3, C2H5) and Δ(C2F5, C2H5) are also re-evaluated, and the recommended values are 0.10 ± 0.02 and 0.12 ± 0.02, respectively. Systems involving perfluoroalkyl and ethyl radicals are complicated due to rapid perfluororadical addition to the ethylene formed in the disproportionation process. The extent of this reaction, and its consequences, are discussed and evaluated. The role of the propionyl (C2H5CO) radical in the room temperature photolysis is also assessed. However, it is found that the Δ values determined by the intercept method used in this work are not affected by the secondary reactions that occur. It is concluded that high cross-combination ratios are general to perfluoroalkyl-alkyl radical interactions. For C3F7 and C2H5 radicals the ratio is 2.7–2.8. Above 100°C ratios exceed 3 due to secondary reactions.  相似文献   

19.
Reactions of Cp2TiR (R = Cl, C6F5, C6H5, o-CH3C6H4) with CO give two types of products: terminally coordinated adducts, Cp2Ti(R)CO, and insertion products, Cp2TiCOR, i.e. acyl compounds. The acyl ligand is η2-coordinated at the titanium atom. The preparations and properties of the compounds are described.  相似文献   

20.
The thermal reaction of Ru3(CO)12 with ethacrynic acid, 4‐[bis(2‐chlorethyl)amino]benzenebutanoic acid (chlorambucil), or 4‐phenylbutyric acid in refluxing solvents, followed by addition of two‐electron donor ligands (L), gives the diruthenium complexes Ru2(CO)4(O2CR)2L2 ( 1 : R = CH2O‐C6H2Cl2‐COC(CH2)C2H5, L = C5H5N; 2 : R = CH2O‐C6H2Cl2‐COC(CH2)C2H5, L = PPh3; 3 : R = C3H6‐C6H4‐N(C2H4‐Cl)2, L = C5H5N; 4 : R = C3H6‐C6H4‐N(C2H4‐Cl)2, L = PPh3; 5 : R = C3H6‐C6H5, L = C5H5N; 6 : R = C3H6‐C6H5, L = PPh3). The single‐crystal structure analyses of 2 , 3 , 5 and 6 reveal a dinuclear Ru2(CO)4 sawhorse structure, the diruthenium backbone being bridged by the carboxylato ligands, while the two L ligands occupy the axial positions of the diruthenium unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号