首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
TheSU (2) Higgs model with a scalar doublet field is studied by Monte Carlo calculations on 124 and 164 lattices. The gauge coupling is chosen to be similar in magnitude to the physical value in the standard model. The numerical results at large scalar self-coupling imply an upper limitm H /m W ?9 for the ratio of the Higgs boson mass to the W-mass.  相似文献   

2.
Z. Kunszt 《Nuclear Physics B》1984,247(2):339-359
Associated production of a heavy Higgs boson (mH > 100 GeV) with top quarks at Juratron energies is studied. It is natural to differentiate between the “light” (2mt < mH < 2mW) and “heavy” (mH > 2mW) Higgs search. It is assumed that the mass value of the top quarks is in the interval mt ≈ 30–80 GeV. mW is the W-boson mass. If mH < 2mW a dangerous background is given by the QCD production of four top quarks. We have calculated the cross sections for both the Higgs production and the background reaction. The disappointing result found is that the background is overwhelmingly large. However the Higgs search in this mass region is not hopeless. The associated production of the Higgs boson with a W-boson may have a clear experimental signature, its background given by the reaction p + pW + t + t might be suppressed. The difficulty with this mechanism is that the rate is rather low. If mH > 2mW the background is different and its contribution is expected to be small. The associated production of a Higgs boson with a pair of top quarks might be a useful method in the Higgs search in this case.  相似文献   

3.
《Nuclear Physics B》1988,297(1):205-220
There are indications that, as a consequence of the trivality of the scalar φ4 theory, the Weinberg-Salam model is massive free field theory. However, considering theWS model as an effective field theory, an upper bound for the Higgs mass can exist. We have studied this phenomenon by simulating the SU(2) gauge Higgs model on a lattice. The results indicate that Rmax = mH/mW|max = 9.3 ± 1. However, serious finite size effects make it unfeasible to explore the region mHΛcutoff with Monte Carlo simulation.  相似文献   

4.
Measurements of e+e? → e+e? at 2.8 GeV are reported and interpreted in terms of limits for the mass and coupling of a possible scalar boson of the type introduced in recent renormalizable models of weak interactions. In particular, in the Georgi-Glashow scheme of leptons we find that the scalar boson mass must be larger than 10 GeV for an mW = 10 GeV (mW mass of the W-boson) and of 6.5 GeV for mW = 15 GeV. Alternatively its coupling is extremely weak.  相似文献   

5.
《Nuclear Physics B》1986,269(1):119-130
We propose a class of supersymmetric grand unified models where parity and SU(2)R breaking scales are widely separated and compatible with a low-lying mass for the right-handed gauge boson WR. The intermediate symmetry SU(4)c×SU(2)L×SU(2)R and Higgs content are uniquely fixed if mWR < 109 GeV. The unification scale lies within an order of magnitude below the Planck mass.  相似文献   

6.
Ruchika Nayyar  Kirti Ranjan 《Pramana》2012,79(5):1289-1292
A search is presented for the Standard Model (SM) Higgs boson optimized in the decay channel H??W ?+? W ??, where both W bosons decay leptonically. The final state considered contains dileptons and missing transverse energy from the neutrinos. A multivariate analysis is used to suppress the background. No significant excess above the SM background has been observed and limits set on the Higgs boson production cross-section ? the branching ratio for m H?= 115?C200?GeV are computed. Results using 8.1?fb?1 of data are presented.  相似文献   

7.
We study general conditions for obtaining spontaneous breaking of local supersymmetry in N = 1 supergravity coupled to supersymmetric matter. We consider in particular the coupling of N = 1 supergravity to grand unified theories like SU(5) and study the conditions which must be met in order to obtain a realistic model. Specific models are built in which local supersymmetry is broken at a scale √MWmp ~ 1010 GeV. This breaking of supersymmetry is only detected at low energies through soft terms breaking explicitly the global supersymmetry. These soft terms (scalar masses, gaugino masses and trilinear scalar couplings) are renormalized at low energies according to the renormalization group. The (mass)2 of the Higgs doublet evolve towards negative values at low energies giving rise to SU(2) × U(1) breaking as a radiative effect of local supersymmetry breaking. We finally point out the possible relevance of non-renormalizable superpotentials for the problem of fermion masses.  相似文献   

8.
The effective theory which characterizes the low-energy sensitivity of the minimal Weinberg-Salam model to a heavy Higgs boson sector is shown to be the gauged SU(2)L × U(1) non-linear θ model. This theory is the limit of the Weinberg-Salam model as the Higgs boson mass, MH, is removed (MH → ∞). Using the symmetry properties of the non-linear theory, along with a power-counting analysis, we are able to classify low-energy observables according to their sensitivity to the regulator (MH). At one loop, the greatest sensitivity is a logarithmic dependence on the Higgs boson mass. The MH dependent corrections to some specific, experimentally accessible observables are calculated, and other possible applications of this technique are discussed.  相似文献   

9.
The phase structure of spontaneously broken scalar electrodynamics in an external electromagnetic field is analyzed. With no external field, the spectrum comprises a scalar boson of mass mH and a vector boson of mass mW. If mHmW, it is shown that in the tree approximation, as the external field is increased, a first order phase transition to a restored symmetry phase occurs, and the critical field strength is calculated. Below the critical point the external field is completely screened, this being the analogue of the Meissner effect in superconductivity. If mH > mW, a third phase, characterized by vortex solutions of the field equations, occurs. Quantum effects, such as pair production in an electric field, are considered at the one (and two) loop level in the massless theory (the Coleman-Weinberg model). The leading correction to the critical magnetic field strength is calculated, and it is shown that for an external electric field the phase transition does not exist.  相似文献   

10.
We study phenomenological consequences of the Standard Model extension by the new spin-1 fields with the internal quantum numbers of the electroweak Higgs doublets. We show, that there are at least three different classes of theories, all motivated by the hierarchy problem, which predict appearance of such vector weak-doublets not far from the weak scale. The common feature for all the models is the existence of an SUW(3) gauge extension of the weak SUW(2) group, which is broken down to the latter at some energy scale around TeV. The Higgs doublet then emerges as either a pseudo-Nambu-Goldstone boson of a global remnant of SUW(3), or as a symmetry partner of the true eaten-up Goldstone boson. In the third class, the Higgs is a scalar component of a high-dimensional SUW(3) gauge field. The common phenomenological feature of these theories is the existence of the electroweak doublet vectors (Z?,W?), which in contrast to well-known Z and W bosons posses only anomalous (magnetic moment type) couplings with ordinary light fermions. This fact leads to some unique signatures for their detection at the hadron colliders.  相似文献   

11.
The total hadronic decay width of the Weinberg-Salam type Higgs boson is estimated in QCD for the Higgs boson mass much larger than the ordinary hadronic mass scale, by use of the operator product expansion and renormalization group equation. We give an explicit formula for the decay width in terms of quark masses including strong interaction corrections up to the next-to-leading order. A numerical analysis of the hadronic decay width of the Higgs boson is made in the six-quark model. The next-to-leading order correction is found to be significant, e.g., 30-20% of the leading term for mH of oue interest, mH ? 1 TeV. Application of our scheme to the decay rates of heavy Higgs bosons of other types is also discussed.  相似文献   

12.
《Nuclear Physics B》1986,268(2):362-382
Expectation values at an arbitrary point of the 3-dimensional coupling parameter space in the lattice-regularized SU(2) Higgs model with a doublet scalar field are expressed by a series of expectation values at infinite self-coupling (λ = ∞). Questions of convergence of this “strong self-coupling expansion” (SSCE) are investigated. The SSCE is a potentially useful tool for the study of the γ-dependence at any value (zero or non-zero) of the bare gauge coupling.  相似文献   

13.
In order to investigate the Higgs mechanism nonperturbatively, we compute the Gaussian effective potential of the U(1) Higgs model (“scalar electrodynamics”). We show that the same simple result is obtained in three different formalisms. A general covariant gauge is used, with Landau gauge proving to be optimal. The renormalization generalizes the “autonomous” renormalization for λ?4 theory and requires a particular relationship between the bare gauge coupling e B and the bare scalar self-coupling λ B. When both couplings are small, then λ is proportional to e4 and the scalar/vector mass-squared ratio is of order e2, as in the classic 1-loop analysis of Coleman and Weinberg. However, as λ increases, e reaches a maximum value and then decreases, and in this “nonperturbative” regime the Higgs scalar can be much heavier than the vector boson. We compare our results to the autonomously renormalized 1-loop effective potential, finding close agreement in the physical predictions. The main phenomenological implication is a Higgs mass of about 2 TeV.  相似文献   

14.
《Physics letters. [Part B]》1986,173(4):480-484
Current experimental limits on K±π±ee+ rule out a neutral scalar particle with the couplings of the standard Higgs boson and mass in the range 50 MeV to 211 MeV. Planned experimental improvements could lead to a bound mHmKmπ.  相似文献   

15.
《Nuclear Physics B》1988,299(1):7-20
We analyze the high-energy behaviour of vector boson scattering amplitudes within the framework of a recently suggested lagrangian model based on global weak isospin symmetry broken by electromagnetism. Requiring vanishing of the most strongly (as s2) rising contribution to vector boson scattering amplitudes leads to vector boson self-interactions dependent on a single parameter, for which the anomalous W± magnetic moment, κ, can be chosen. Tree unitarity is violated at about 2 TeV for arbitrary κ as in the SU(2)L × U(1)Y theory for mH → ∞. The model is well suited for significant tests of the vector boson sector of the SU(2)L × U(1)Y electroweak theory in processes such as e+e → W+W.  相似文献   

16.
《Nuclear Physics B》1996,474(2):421-445
The finite temperature phase transition in the SU(2) Higgs model at a Higgs boson mass MH ≅ 34 GeV is studied in numerical simulations on four-dimensional lattices with time-like extensions up to Lt = 5. The effects of the finite volume and finite lattice spacing on masses and couplings are studied in detail. The errors due to uncertainties in the critical hopping parameter are estimated. The thermodynamics of the electroweak plasma near the phase transition is investigated by determining the relation between energy density and pressure.  相似文献   

17.
Within the minimal model based on the four-color symmetry of quarks and leptons of the Pati-Salam type, the asymptotic behavior of amplitudes for processes involving longitudinal leptoquarks (and W or Z′ bosons) is investigated, together with the mechanism according to which the growth of these amplitudes at high energies is suppressed by scalar fields. It is shown that, within the Higgs mechanism of mass generation and of the mass splitting of quarks and leptons, the four-color symmetry of quarks and leptons requires that scalar-leptoquark doublets, scalar-gluon doublets, and an extra color-singlet scalar doublet exist in addition to the standard Higgs doublet.  相似文献   

18.
S K Soni 《Pramana》1980,14(1):75-96
In schemes with oneW boson and twoZ-bosons (mediating the charged and neutral current interactions involving ordinary fermions) based on the direct product and simple groups, SU(2) × U(1) ×u′(1) andG × U(1) (G is a simple group of rank two), the following two questions are discussed. (1) What are the necessary and sufficient conditions for minimal reducibility of the effective four-fermion neutral current interaction (involving νμ-hadron, electron-hadron and νμ-electron sectors) to the corresponding prediction of the standard model? (2) In what way are the masses of the twoZ-bosons constrained relative to the mass of the neutral boson of standard model? The answers to these questions are given first by keeping the underlying Higgs structure, responsible for gauge-boson (and fermion) mass generation, completely arbitrary (called Higgs-independent case) and then by making a specific choice for the Higgs structure resulting in a natural mass relation for theW andZ-bosons that is an exact counterpart toM W (S)/2 =M Z (S)/2 sec2 ? W for the standard model (called Higgs-dependent case). The distinction between these two cases is brought out clearly as also that between the direct product and simple groups. Whether or not any assumption is made about the Higgs structure, with either the direct product or the simple group, it is concluded that in general there is aZ-boson lighter than the neutral boson of the standard model.  相似文献   

19.
《Physics letters. [Part B]》1987,198(3):416-420
We calculate the higher-order Higgs particle production process gg→gH for a large top-quark mass (2mt > mH). We compute the resulting associated cross section for intermediate-mass Higgs particle (mW<mH<2mW) at SSC, followed by its dominant decay mode into a bottom-quark pair. At large pT the cross section becomes comparable to that of the QCD background while remaining sufficiently large for detection at SSC.  相似文献   

20.
The rate for the decay of a Z-boson into a Higgs boson and monochromatic photon is computed to leading order in the standard SU(2) × U(1) gauge theory. The coupling has contributions from fermion and W-boson loops. The W-boson loop dominates unless the number of heavy fermion generations exceeds six. The branching ratio computed from the W-boson loop contribution, B(Z→Hγ), is approximately 2 × 10?6(1?(MH2MZ2))3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号