首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
La0.8Sr0.2-xCaxCo0.9Fe0.1O3-δ的合成与电性能   总被引:10,自引:4,他引:10  
利用X射线衍射 (XRD)、差热 热重 (DSC/TG)与直流四探针测试分析方法研究了少量Ca取代LaCoO3 中部分La的合成过程及对其电导率的作用。采用固相反应合成的La0 .8Sr0 .2 -xCaxCo0 .9Fe0 .1 O3 -δ(LSCCF ,0≤x≤ 0 1)氧化物为单一钙钛矿相 ,其烧结过程可以分为 3个阶段 :即反应原料的变化 ;LaCoO3 基氧化物的生成 ;LSCCF固溶体的形成。LSCCF复合掺杂材料电导率的最大值都超过了 10 0S·cm- 1 ,其导电机制可以用p型小极子的绝热空隙理论来解释  相似文献   

2.
纳米TiO2修饰的La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)阴极被直接应用于YSZ电解质电池上. TiO2可阻止LSCF和YSZ间的化学反应,抑制SrZrO3的形成. LSCF-0.25 wt% TiO2阴极电池在0.7 V和600°C下的电流密度是LSCF阴极电池的1.6倍.电化学阻抗谱结果表明, TiO2修饰显著加快了氧离子注入电解质的过程,这可能与TiO2抑制了阴极/电解质界面处高电阻SrZrO3层的形成有关.本文为在ZrO2基电解质上使用高性能的(La,Sr)(Co,Fe)O3阴极材料提供了一种简单有效的方法.  相似文献   

3.
纳米TiO2修饰的La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)阴极被直接应用于YSZ电解质电池上. TiO2可阻止LSCF和YSZ间的化学反应,抑制SrZrO3的形成. LSCF-0.25 wt% TiO2阴极电池在0.7 V和600°C下的电流密度是LSCF阴极电池的1.6倍.电化学阻抗谱结果表明, TiO2修饰显著加快了氧离子注入电解质的过程,这可能与TiO2抑制了阴极/电解质界面处高电阻SrZrO3层的形成有关.本文为在ZrO2基电解质上使用高性能的(La,Sr)(Co,Fe)O3阴极材料提供了一种简单有效的方法.  相似文献   

4.
Ba0.5Sr0.5Co0.8Fe0.2O3-δ为阴极的中温固体氧化物燃料电池   总被引:1,自引:0,他引:1  
 通过在阴极与氧化钇稳定的氧化锆电解质间添加Gd0.1Ce0.9O1.95 (GDC)隔层,成功地将Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF)阴极应用在中温固体氧化物燃料电池上. 由BSCF膜的高透氧率可知,BSCF在中温范围内具有很高的氧离子电导率. 在添加GDC隔层后,电池以空气为氧化剂时显示了很高的性能,极化电阻急剧下降,表明GDC隔层的添加是必要和有效的.  相似文献   

5.
采用硝酸盐-甘氨酸溶液燃烧法合成了La0.6Sr0.4Co0.2Fe0.8O3-?啄(LSCF)前驱粉体, 通过XRD、BET、FESEM及激光粒度仪等手段对粉体进行表征. 结果表明, 所合成的LSCF粉体为纯钙钛矿结构, 具有高达22.9 m2·g-1的比表面积, 粒度均匀, 平均颗粒尺寸为175 nm. 非等温烧结实验表明该粉体具有良好的低温烧结活性. 在阳极NiO-YSZ(氧化钇稳定氧化锆)负载的电解质YSZ上, 于800 ℃烧结制备LSCF阴极组成的单元电池Ni-YSZ/YSZ/LSCF, 在700 ℃下以H2作燃料时具有良好的电池性能, 最大功率密度为0.97 W·cm-2, 在0.7 V时的功率密度约达到0.83 W·cm-2. 这种无中间缓冲层的低温制备LSCF阴极方法, 简化了电池结构及其制备过程, 同时提高了电池的性能.  相似文献   

6.
采用甘氨酸-硝酸盐(GNP)法合成了新型中温固体氧化物燃料电池(IT-SOFC)的阴极材料Gd1-xSrxCoO3-δ(x=0~0.5)和Gd0.8Sr0.2Co1-yFeyO3-δ(y=0~1),所合成的初始粉体在800℃下煅烧12h后均形成了钙钛矿结构的单相固溶体。研究发现,Gd0.8Sr0.2CoO3-δ(GSC)的电导率在600℃时达到了559S·cm^-1,由Ce0.8Gd0.2O2-δ(GDC)电解质和GSC-25GDC材料组成的对称电极在600℃和700℃的界面阻抗分别为0.170Ω·cm^2和0.064Ω·cm^2,活化能仅为87.8kJ·mol^-1,预示其可以作为ITSOFC较为理想的阴极备选材料;随着Fe3+离子含量的增加,Gd0.8Sr0.2Co1-yFeyO3-δ系列阴极材料的热膨胀系数显著降低,但其电导率也急速下降;此外,通过调整Gd0.8Sr0.2CoO3-δ与GDC的比例可以制备出热膨胀系数与GDC电解质匹配、性能良好的Gd0.8Sr0.2CoO3-δ/GDC复合阴极材料。  相似文献   

7.
Composite cathodes consisting of -La1.6Sr0.4NiO4(LSN) and -Ce0.9Gd0.1O1.9(CGO) has been prepared for intermediate temperature solid oxide fuel cell (IT-SOFC). The chemical stability, microstructures and electrochemical performance of the cathode have been investigated using XRD, SEM and AC impedance spectroscopy. Results showed that strong bonding was formed between the composite electrodes and CGO electrolytes after the electrodes were fired at 1 050 ℃ for 4 hours. The polarization resistance changed with oxygen partial pressure, suggesting that charge transfer process was the rate limiting step for electrochemical oxygen reduction at the composite cathodes. Area specific resistance (ASR) for a LSN-40CGO composite cathode was 0.76 Ω·cm2 at 700 ℃, which was four times lower than that of a pure LSN cathode. 1.7% decrease of the cathode current density was observed in the stability test of the composite cathode.  相似文献   

8.
应用丝网印刷和共烧结制备LaNi0.6Fe0.4O3-δ(LNF)-Gd0.2Ce0.8O2(GDC)梯度复合阴极/Gd0.2Ce0.8O2/Sc0.1Zr0.9O1.95(ScSZ)/Gd0.2Ce0.8O2/LaNi0.6Fe0.4O3-δ(LNF)-Gd0.2Ce0.8O2(GDC),组成梯度复合阴极对称电池.实验表明,在750 oC工作温度下单层70%LNF-30%GDC(文中均指质量百分比)复合阴极的极化电阻为0.581Ω·cm2,而三层60%LNF-40%GDC/70%LNF-30%GDC/100%LNF复合阴极的极化电阻最小(0.452Ω·cm2).由于阴极组成在ScSZ电解质和LNF阴极之间呈梯度变化,因此获得了最佳的阴极/电解质界面,大大加快了三相界面或气体/阴极/电解质三相接触点反应区的扩散,其电荷传递电阻Rct和浓差极化电阻Rd均减小,因而具有最低的阴极极化电阻值.  相似文献   

9.
固体氧化物燃料电池;阴极材料;溶胶-凝胶法  相似文献   

10.
刘珩  黄波  朱新坚 《电化学》2011,(4):421-426
以硝酸镧、硝酸镍和硝酸铁为原料,柠檬酸作燃料低温燃烧合成固体氧化物燃料电池阴极材料LaNi0.6Fe0.4O3-δ.X射线衍射(XRD)图谱显示,600℃煅烧可形成单一的LaNi0.6 Fe0.4 O3-δ钙钛矿相.电子显微镜(TEM和SEM)照片看出,其颗粒尺寸〈100 nm.电池交流阻抗谱图表明,在1050℃烧结制...  相似文献   

11.
采用柠檬酸盐法合成出La0.6Sr0.4Co0.8Fe0.2O3钙钛矿复合氧化物超细粉料,考查了各种影响溶胶与凝胶的形成以及合成粉料晶体结构与颗粒形态的因素,并确定了最佳的合成条件。研究了烧成温度对La0.6Sr0.4Co0.8Fe0.2O3电导率的影响,发现1200℃是最合适的烧成温度。研究结果表明,在室温~900℃范围内,样品的电导率在600℃附近出现峰值(~103S·cm-1),在低温段样品的导电行为符合小极化子导电机制,不同烧成温度的样品的导电活化能基本一致(5.31~5.79kJ·mol-1)。与常规固相合成法相比,柠檬酸盐法合成的La0.6Sr0.4Co0.8Fe0.2O3具有更高的烧结活性和电导率。  相似文献   

12.
化石燃料的使用排放了大量CO2,对气候和环境造成了日益严重的危害.固体氧化物电解池(SOEC)能够利用可再生能源产生的电能将CO2高效转化成CO,降低CO2排放的同时,又能减少化石燃料的使用,近年来受到研究者的广泛关注.相比于低温液相CO2电还原,SOEC高的运行温度保证了其较高的反应速率,即较高的电流密度.典型的SOEC单电池由多孔阴极、致密电解质和多孔阳极以三明治的方式组装而成.CO2分子在阴极得到两个电子解离成CO和一个O2–;生成的O2–通过致密电解质传导至阳极,在阳极失去四个电子发生析氧反应(OER)生成一个O2.相比于两电子的阴极反应,阳极四电子的析氧反应更难进行,可能是整个电极过程的速控步,因此开发高性能的阳极材料有望显著提高SOEC的CO2电还原性能.La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)因具有较高的混合离子-电子导电性而被用作SOEC阳极材料,但受LSCF-气体两相界面的限制,其OER性能较低.研究表明,LSCF-掺杂的CeO2-气体所构成的三相界面相比于LSCF-气体两相界面具有更高的电化学反应活性,即OER反应更易在三相界面进行.因此,本文将Gd0.2Ce0.8O1.9(GDC)纳米颗粒浸渍到SOEC LSCF阳极来提高其OER活性,考察了纳米颗粒浸渍量(3,5,10和20 wt%)对SOEC电化学性能的影响.结果表明,SOEC的电化学性能随浸渍量的增加而逐渐升高,当GDC纳米颗粒浸渍量为10 wt%时(10GDC/LSCF),SOEC的电化学性能达到最高,在800 oC和1.6 V的电流密度为0.555 A cm–2,是LSCF阳极SOEC性能的1.32倍.继续增加浸渍量到20 wt%,电化学性能反而开始下降.电化学阻抗谱测试结果表明,GDC纳米颗粒的加入减小了SOEC的极化电阻.对应的弛豫时间分布函数解析结果表明10GDC/LSCF阳极上的OER由四个基元反应构成.电镜和O2-程序升温脱附结果表明,GDC纳米颗粒的加入显著增加了10GDC/LSCF阳极三相界面和表面氧空位的数量以及体相氧的流动性,从而促进了OER四个基元反应的反应速率,降低了这几个过程的极化电阻,因而降低了OER反应的极化电阻,提高了SOEC电还原CO2的电化学性能.  相似文献   

13.
采用硝酸盐分解方法在Sm0.5Sr0.5CoO3 (SSC)中掺入少量的银 (Ag), 形成可用于SOFC的多孔阴极材料 (SSC-Agx). 通过X射线衍射测试确定了材料的物相组成; 用SEM观测了中温电解质Ce0.8Sm0.2O1.9表面涂层电极的微结构; 利用电化学极化曲线和阻抗谱研究了这些材料中低温 (500~800 ℃)电化学性能, 确定掺Ag量和烧结温度对阴极电化学性能的影响. 结果表明, SSC在中温区掺20% Ag时具有最佳的电化学性能, 在600 ℃阴极总阻抗是SSC的1/11, 在750 ℃为SSC的1/4, SSC中掺Ag是提高阴极在中温区电化学性能的有效途径.  相似文献   

14.
采用EDTA-柠檬酸盐法制备了(Pr0.9La0.12(Ni0.74Cu0.21Ga0.05)O4+δ(PLNCG),并与Ce0.9Gd0.1O2-δ(CGO)形成复合阴极PLNCG-CGO。XRD和SEM分析结果表明PLNCG与CGO在1 000℃具有较好的化学相容性。电化学阻抗测试结果表明PLNCG-30% CGO复合阴极在700℃的极化电阻为0.092 Ω·cm2;过电位为39.3 mV时,电流密度达到113.3 mA·cm-2。氧分压分析表明电极反应的速率控制步骤为电荷转移过程。阳极支撑单电池(Ni-CGO/CGO/PLNCG-30% CGO)在700℃的最大输出功率密度达到569 mW·cm-2,开路电压(OCV)为0.76 V。综上结果预示PLNCG-30% CGO复合阴极是一种有发展前景的电极材料。  相似文献   

15.
采用改进的溶胶-凝胶法合成固体氧化物燃料电池阴极系粉体Pr0.6-zSr0.4Co0.8Fe0.2O3-δ(PSCF)(z=0,0.02,0.05,0.1)。使用X射线衍射(XRD)、扫描电子显微镜(SEM)对其相结构与形貌进行了分析,结果表明:900℃以上焙烧后的阴极粉体Pr0.6-zSr0.4Co0.8Fe0.2O3-δ(z=0,0.02,0.05,0.1)为单一的钙钛矿结构。1000℃烧结的样品内粒子分布比较均匀,且颗粒内部存在一定程度的空隙,并与电解质附着情况良好。用直流四电极法测试阴极体系样品在400~750℃的电导率,发现各试样混合离子电子电导率均高于786 S.cm-1,能够满足固体氧化物燃料电池对阴极电导率的要求。用交流阻抗法测定PSCF-Ce0.8Sm0.2O1.9体系样品的阻抗谱,得到1000℃烧结的阴极体系对称电池在测试温度为750℃z=0,z=0.02,z=0.05时的极化电阻分别为0.041,0.040,0.034Ω.cm-2。  相似文献   

16.
研究了新型固溶法合成La0.8Sr0.2MnO3(LSM)包覆Ba0.5Sr0.5Co0.8Fe0.2O3(BSCF)复合粉体(LSM-BSCF),并探讨了其作为中温固体氧化物燃料电池阴极材料的电化学性能.LSM-BSCF阴极结合了LSM和BSCF阴极的优点,不仅增大了三相界面,而且稳定了微观结构.当温度为600儃750°C时,其极化阻抗为0.61儃0.09Ω·cm2.与溶液注入法制备的高性能电极相比,极大地提高了性能稳定性.  相似文献   

17.
采用EDTA-柠檬酸盐法制备了(Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ(PLNCG),并与Ce0.9Gd0.1O2-δ(CGO)形成复合阴极PLNCG-CGO。XRD和SEM分析结果表明PLNCG与CGO在1 000℃具有较好的化学相容性。电化学阻抗测试结果表明PLNCG-30%CGO复合阴极在700℃的极化电阻为0.092Ω·cm2;过电位为39.3 m V时,电流密度达到113.3 m A·cm-2。氧分压分析表明电极反应的速率控制步骤为电荷转移过程。阳极支撑单电池(Ni-CGO/CGO/PLNCG-30%CGO)在700℃的最大输出功率密度达到569 m W·cm-2,开路电压(OCV)为0.76 V。  相似文献   

18.
工作温度在800℃以下的固体氧化物燃料电池可采用铁素体不锈钢SUS430(含Cr16%-17%(质量分数))作为连接体材料,然而不锈钢在高温下极易发生氧化形成Cr2O3和Fe3O4等尖晶石相化合物,从而大大地降低了电池的性能。本研究的主要目的是通过空气等离子喷涂(APS)La0.8Sr0.2Mn(Fe)O3-δ(LSM20)和La0.8Sr0.2Mn(Fe)O3-δ(LSF20)保护性涂层来降低合金的氧化生长速率,尤其是减少Cr2O3相的生长。采用XRD和SEM/EDX表征了氧化层的相组成和微观结构特征。在800℃空气中进行了热震实验,经50次循环,LSM20和LSF20涂层合金十分稳定,而SUS430合金氧化层表现出明显地剥落和失重现象。LSF20涂层具有明显的氧化增重速率慢,氧化后界面电阻低,能有效地抑制Cr向合金表面扩散等优点,在800℃空气中氧化1000h后,LSF20涂层合金的界面电阻比LSM20涂层合金的降低了23倍。  相似文献   

19.
以固相反应方法合成了碱土(Ca,Sr)双掺杂的氧化铈基固溶体材料Ce0.9Ca0.1-xSrxO1.9(x=0,0.04,0.05,0.06,0.1)。结构研究表明:碱土双掺杂的CeO2呈立方萤石结构,利用阻抗谱研究了材料的离子导电性,发现碱土双掇掺杂有利于提高材料离子导电率,掺杂两种碱土金属离子的等效半径接近临界离子半径时导电流最高。将此系列材料作为电解质进行了燃料电池试验,发现电池的输出功率高YSZ电解质及碱土单掺杂氧化铈,且电池输出开路电压亦高于单掺杂的情况。  相似文献   

20.
应用丝网印刷和共烧结制备LaNi0.6Fe0.4O3-δ/Sc0.1Zr0.9O1.95/LaNi0.6Fe0.4O3-δ对称电池.以硝酸铈和硝酸钆为原料,柠檬酸作燃料,燃烧合成Gd0.2Ce0.8O2(GDC)包覆的LaNi0.6Fe0.4O3-δ(LNF)阴极.实验表明,在750oC工作温度下,纯LaNi0.6Fe0.4O3-δ阴极的极化电阻为0.70Ω.cm2,而21.3%(by mass,下同,如无特殊标注均为质量分数)GDC包覆的LNF-GDC复合阴极的极化电阻最小(0.13Ω.cm2),活化能最低(136.80 kJ.mol-1),故其阴极性能最佳.GDC的包覆加速了气体/阴极/电解质三相界面反应区的扩散过程,降低了阴极极化电阻.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号