首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Relaxor ferroelectric polymer poly(vinylidene fluoride–trifluoroethylene–chlorofluoroethylene) (P(VDF-TrFE-CFE)) and its blends have been shown to exhibit a giant electrocaloric effect (ECE) over a broad temperature range, e.g. from 0 to 50 °C. Here, a special calorimeter was designed to directly characterize the heat absorbed QECE due to ECE cooling of the blend of P(VDF-TrFE-CFE) with P(VDF-TrFE) 65/35 mol% copolymer down to ?15 °C, which covers the temperature range for many refrigeration applications. From QECE, the isothermal entropy change ΔS and adiabatic temperature change ΔT are deduced. The data reveal that at ?15 °C the relaxor terpolymer/copolymer blend generates ΔS = 23.0J kg?1 K?1 and ΔT = 5.1K under 100 MV/m, which are still more than 65% of the ECE at room temperature. This temperature is far below the dielectric peak temperature of the relaxor blend and the results reveal the promise of the relaxor polymers for a broad range of EC cooling applications.  相似文献   

2.
Experimental investigations on the ferroelectric liquid crystal, R-4′(1-butoxycarbonyl-1-ethoxy) phenyl 4-(4-octyloxy phenyl) benzoate (1BC1EPOPB) of large spontaneous polarization (P S(+) = 240?nC?cm?2), using dielectric and calorimetric techniques, are reported. The temperature range of 25.0–125.0°C has been chosen for dielectric measurements. Dielectric dispersion studies are carried out in the temperature range 45.0–75.0°C and in the frequency range 2?Hz to 2?MHz for the smectic A, smectic C* and smectic X phases. A new phase called ‘smectic X’ has been found around 56.3°C. The transition temperatures identified by the dielectric dispersion studies for different phases and those given by DSC techniques are in close agreement.  相似文献   

3.
An ultracryostat and multidecameter were used to determine the temperature dependence of the dielectric constant ?′ and dielectric loss ?″ over a wide range of frequencies of single crystals and polycrystalline samples of (NH4)2SO4 in the region of the low temperature phase transition. A sharp increase was observed in the values of ?′ and ?″ at about ?50°C. In addition, a dielectric dispersion was detected and found to be more pronounced in the high temperature phase. This dispersion was attributed to piezoelectric resonance. The observed sudden increase in the values of the dielectric constant and dielectric loss below ? 50°C was attributed to the ferroelectric nature of the low temperature phase of (NH4)2SO4.A DTA thermogram showed a sharp peak at ? 50°C which indicated that the phase transition is one of first order type. A TMA thermogram showed that this transformation was associated with a rapid increase in the expansion coefficient. Such an increase in the lattice parameter might be attributed to the enhanced rotation of electric dipoles associated with the distorted NH4+ and SO42? ions. The distortion of both the ammonium and sulfate ions in addition to their expected orientational motion are suggested to be responsible for the ferroelectric behaviour of ammonium sulfate below ?50°C.A transition to a metastable hexagonal state at about ?40°C is thought to occur, and this transformation is found to be irreversible.  相似文献   

4.
Antiferroelectric PbZrO3 thin films have been deposited on Pt(111)/Ti/SiO2/Si substrate by polymer modified sol–gel route. Temperature dependent PE hysteresis loops have been measured at 51 MV/m within a temperature range of 40 °C to 330 °C. The maximum electrocaloric effect ~0.224 × 10–6 K mV–1 has been observed near the dielectric phase transition temperature (235 °C) of the thin films. The electrocaloric effect and its strong temperature dependence have been attributed to nearly first‐order phase transition. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The (1–x)NaNO2 + xBaTiO3 composites of two compositions (x = 0.05 and 0.1) have been studied by powder neutron diffraction and broadband dielectric spectroscopy (frequency region 10–1–107 Hz). The temperature dependences of the ferroelectric order parameter of NaNO2 in the composites and pure NaNO2 have been measured. The frequency dependences of the real and imaginary parts of the permittivities of the composites and pure NaNO2 have been analyzed in the temperature range 25–187°C. The anomaly of the dielectric response observed at T ~ 147°C is assumed to be related to the processes of accumulation and “resolution” of charges at the BaTiO3 particle boundaries.  相似文献   

6.
Lead zirconate titanate (PZT) films were fabricated on Pt(111)/Ti/SiO2/Si(100) using the triol sol--gel method. The effect of the pre-heating temperature on the phase transformations, microstructures, electrical properties and ferroelectric properties of the PZT thin films was investigated. Randomly-oriented PZT thin films pre-heated at 400°C for 10?min and annealed at 600°C for 30?min showed well-defined ferroelectric hysteresis loops with a remanent polarization of 26.57?µC?cm?2 and a coercive field of 115.42?kV?cm?1. The dielectric constant and dielectric loss of the PZT films were 621 and 0.0395, respectively. The microstructures of the thin films are dense, crack-free and homogeneous with fine grains about 15–20?nm in size.  相似文献   

7.
The temperature dependences of the real and imaginary parts of the complex permittivity of vinylidene fluoride-trifluoroethylene copolymer films at temperatures ranging from ?40 to 140°C are determined in the frequency range 10?1–108 Hz. An analysis of the experimental data has demonstrated that the behavior of the dielectric characteristics of the copolymer in the course of heating to temperatures above the ferroelectric phase transition point and during subsequent cooling differs substantially. In the latter case, the high-frequency dielectric response exhibits properties characteristic of relaxor ferroelectrics. The observed features are discussed in terms of the competition of two mechanisms associated with the short-range and long-range forces.  相似文献   

8.
Polycrystalline samples of KVO3, a member of the pyroxene structural family have been synthesised with high-temperature solid-state reaction technique. Preliminary structural and spectroscopic and detailed dielectric properties have been studied in different conditions. No dielectric anomaly or hysteresis loop has been observed in a wide temperature range (30°C to 450°C). Basic structural and spectroscopic (IR and Raman) studies suggest that at room temperature, KVO3 is centrosymmetric as reported earlier. This and other observations do not support the recent report of ferroelectric phase transition in the compound.  相似文献   

9.
The effect of nanometric grain size modulation on the behavior of different kinds of chemically synthesized multiferroic ferrite–ferroelectric nanocomposites with cobalt zinc ferrite (Co0.65Zn0.35Fe2O4) as a ferrimagnetic component and lead zirconate titanate (PbZr0.52Ti0.48O3) as a ferroelectric component have been investigated in detail. Formation of two distinct pure phases of as-prepared nanocomposites was confirmed from recorded X-ray diffraction patterns at room temperature. The backscattered mode of a field emission scanning electron microscope micrograph has been used to study the microstructure, average grain size, and distribution of the two individual phases in the composites. Magnetization vs. magnetic field measurements clearly show the room temperature good hysteretic ferrimagnetic behavior of the composites having coercivity of 83–124 Oe and spontaneous magnetization of 20–24 emu/g. The dielectric constant is found to increase with increasing grain size of the nanocomposites from 124 to 687 at a frequency of 1 kHz. Investigation of temperature-dependent dielectric constant behavior reveals that the paraelectric–ferroelectric transition temperature decreases from 364 to 351 °C with decreasing particle size. A complex impedance spectroscopy study was carried out in the frequency range of 50 Hz–1 MHz and in the temperature range of 27–400 °C. The contribution of both grains and grain boundaries in the electrical properties of the composites has been confirmed from the complex impedance spectroscopy data. The activation energies estimated from the complex impedance spectroscopy and the ac conductivity spectrum are found to be nearly the same for the nanocomposites. The polarization vs. electric field measurement exhibits a typical ferroelectric hysteresis loop at room temperature and provides conclusive evidence of the presence of spontaneous polarization in the composites, confirming the presence of excellent ferroelectricity in the nanocomposites. At room temperature the multiferroic behavior of the composites is also confirmed from detailed magnetoelectric (ME) response studies. The optimal ME response is observed to be 0.6 % for higher temperature sintered composites.  相似文献   

10.
The 3D dependences ?′(log f, T) and tanδ(logf, T) of a perfect BaTiO3 single crystal grown by the Remeika method have been studied in the ranges f = 1–2 × 107 Hz and T = ?80–130°C. These dependences characterize a transition from the paraelectric phase (121.5°C) as a near-antiferroelectric transition followed by the transition to the tetragonal phase at ~79.5°C. According to a number of signs, the range 121.5–79.5°C corresponds to a metastable phase typical of first-order phase transitions. The unexpected result of this work has been discussed with invoking the hypothesis on the BaTiO3 structure in the paraelectric phase, according to which it consists of three antiferroelectric states oriented along the crystallographic axes. Using the dielectric properties of BaTiO3 as an example, the method of direct correct determination of the temperatures of the structural transformations from the anomaly of tanδ(logf, T) has also been demonstrated.  相似文献   

11.
The effect of supercritical CO2 on the electrical conductivity of poly(epichlorohydrin–Ethylene oxide–Allyl glycidal ether) terpolymer is investigated using dielectric spectroscopy. Impedance measurements were carried out in the frequency range from 100–10 MHz and the temperature range of ?35–70°C with intervals of 5°C. The experimental results of the dielectric constant and the dielectric loss were fitted with the Cole–Cole equation to obtain the maximum relaxation frequencies of the different relaxation processes. As a result of the CO2 treatment process, enhancement in the polymer chain mobility without noteworthy change in the glass transition temperature was determined. In addition, the level of the DC conductivity and the dielectric strength were increased. These effects were attributed to improvement in the chain dynamics, which arises from enhancement in the parallel conformation of macromolecules.  相似文献   

12.
Thermal behavior of such fundamental physical properties as polarization, pyroelectric current, dielectric constant and paramagnetic susceptibility are reported for dilithium heptamolybdotetragadolinate, Li2Gd4 (MoO4)7. The ferroelectric transition point has been determined by various methods and the results compared. The most reliable value of the Curie point has been obtained by the measurement of differential magnetic susceptibility as a function of temperature and is found to be 52±2°C. The room temperature values for the relative dielectric constant and paramagnetic susceptibility are 51.5 and 59.8 x 10-6 cm3. g-1, respectively. From the susceptibility measurements the values obtained for the Curie constant, C, and the paramagnetic Curie point, θp, are 1.79 x 10-2 cm3 . g-1 . deg and 247°K, respectively. It is believed that Li2Gd4 (MoO4)7 could be antiferromagnetic between 273 and 325°K.  相似文献   

13.
We report blend-based plastic polymer electrolyte (i.e., polyethylene oxide (PEO)–polydimethyl siloxane (PDMS)–lithium hexafluorophosphate (LiPF6)) with substantial improvement in DC conductivity at ambient and subambient temperatures when compared with literature reports. Conductivity variation with salt concentration, investigated within ±30 °C range, indicates an optimum conductivity of 5.6?×?10?5 S cm?1 at 30 °C for Ö/Li ~10 with a further lowering by one order at 0 °C and it remains unaltered at ?10 °C. Enhanced conductivity in this blend electrolyte, though lower than two copolymer counterparts, is attributed to very low glass transition temperatures of the host polymers. X-ray diffraction (XRD) and scanning electron microscopy (SEM) suggest an effective blending between the two polymers with an effective interaction between the Li salt and the blend polymer matrix. Raman spectroscopy results indicated that cation (Li+) coordination occurs at the C=Ö site in PEO out of the two electron-rich sites (i.e., CÖ and Si–Ö–Si) in the PEO–PDMS blend. The blend electrolytes are predominantly ionic (t ion ~97 %).  相似文献   

14.
The dielectric constant of deuterated ammonium Rochelle salt along the three crystallographic axes as well as the pyroelectric charge density developed on the crystal surface perpendicularly to the b-axis have been measured with a high temperature resolution. The para- to ferroelectric transition at Tc = ?159°C shows a thermal hysteresis of ΔT = 0.15°C. This and the discontinuities in the dielectric constant along all three axes show that the phase transition is of the first-order. No phase intermediate between the para- and the ferroelectric phases could be detected.  相似文献   

15.
The BICO0.20–xNIxVOX solid electrolyte was synthesized by the standard solid-state reaction. The effect of Ni(II) substitution for Co(III) on phase stabilization and oxide-ion performance has been investigated in the compositional range 0?≤?x?≤?0.20 using X-ray powder diffraction, differential thermal analysis and AC impedance spectroscopy. The highly conductive γ′-phase was effectively stabilized at room temperature for compositions with x?≥?0.13 whose thermal stability increases with Ni content. The complex plane plots of impedance were typically represented at temperatures below 380?°C, suggesting a major contribution of polycrystalline grains to the overall electrical conductivity. The dielectric permittivity measurements revealed the fact that suppression of the ferroelectric transition is compositionally dependent. Interestingly, the maximum ionic conductivity at lower temperatures (~2.56?×?10?4?S?cm?1 at 300?°C) was observed for the composition with x?=?0.13. The variation of low-temperature conductivity with Ni content was accompanied with a general drop in the corresponding values of ΔELT. However, the local minimum high-temperature conductivity, σ600?°C?~?2.26?×?10?2?S?cm?1 for x?=?0.10, coupled with a local maximum value of ΔEHT?~?0.48?eV was attributed to an increased defect trapping effect correlated with the V(V)?→?V(IV) reduction at elevated temperatures.  相似文献   

16.
The present work is devoted to study on influences of silicon dioxide nanoparticles (SiO2) on structure and phase transition of a classical ferroelectric of triglycine sulfate (TGS) by synthesizing a composite containing SiO2 and TGS at different composition weight ratios. Particle size analysis, X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) techniques were utilized to charaterize the synthesized composite. The experiments for investigation of phase transition were conducted from 20 to 120°C under a weak electric field (1?V.cm?1) at 1?kHz. The results revealed an expansion of ferroelectric phase of TGS by 15–55°C with increasing the SiO2 content. Besides, an additional phase transition point which is characteristic for the bulk clusters of TGS was found at low content of SiO2. The detected anomalies were discussed thoroughly based on the interaction between components in the composite.  相似文献   

17.
Abstract

This paper presents the results of the investigation of dielectric dispersion and ultrasonic velocity in the ferroelectric (CH3)2NH2Al(SO4)2 · 6H2O crystal. The crystal shows a critical slowing down process of polarization with an extremely long relaxation time of the dipole system (τ = 1.6 · 10?7s at the phase transition point). The dielectric response over the frequency range up to 56 GHz in the paraelectric phase can be well described in terms of a monodispersive Debye-type formula. The activation energy of dipoles in the paraelectric phase is 0.11 eV = 8.5 kTc . The results show that the proper ferroelectric phase transition is nearly critical and of the order-disorder type.  相似文献   

18.
In addition to the paraelectric-ferroelectric phase transition at Tc = + 62°C there is another low T phase transition in the −152 to −165°C range associated with a sudden change in the NQR spectra.The three 35Cl NQR lines observed in the P32 ferroelectric phase of (CH3NH3)HgCl3 below Tc = 62°C suddenly disappear on cooling below −152°C. No lines could be observed between 152 and −165°C. Below this temperature five 35Cl NQR lines appear and remain down to liquid nitrogen temperature.  相似文献   

19.
Abstract

Mono- and polycrystalline Al2O3 has been irradiated to 3.5· 1019 f.n/cm2, and the increase in dielectric loss has been measured at 28–38 GHz and 144–146 GHz. Step annealing experiments have been performed between 150 °C and 1100 °C. The recovery of dielectric loss has been analyzed aiming at identifying the defect types affecting dielectric loss. A pronounced recovery step observed at 450–550 °C is explained by F-centres with strong electron-lattice coupling which contribute predominantly to dielectric loss at room temperature.  相似文献   

20.
The results of ferroelectric properties studies of KNN doped with La and Ti and sintered at temperatures in the interval of 1100 °C–1190 °C are presented in this work. The doping was achieved by the substitution of La for ions in A sites and Ti for ions in the B sites. Values of 94 % of the theoretical density were accomplished. The effect of the sintering temperature and the inclusion of the La and Ti cations in the KNN structure is evident through the shift in the ferroelectric-paraelectric transition temperature of ~110 °C with respect to that of pure KNN (420 °C). Microstructure and ferroelectric analyses were carried out using Piezoresponse Force Microscopy (PFM) and hysteresis loops with interesting results, ΔP r=9 (μC/cm2) and P r/P max=0.41, even when the saturation of the materials is not reached.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号