首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contamination of water resources by pharmaceutical residues, especially during the time of pandemics, has become a serious problem worldwide and concerns have been raised about the efficient elimination of these compounds from aquatic environments. This study has focused on the development and evaluation of the sonocatalytic activity of a flower-like MoS2/CNTs nanocomposite for the targeted degradation of hydroxychloroquine (HCQ). This nanocomposite was prepared using a facile hydrothermal route and characterized with various analytical methods, including X-ray diffraction and electron microscopy, which results confirmed the successful synthesis of the nanocomposite. Moreover, the results of the Brunauer–Emmett–Teller and diffuse reflectance spectroscopy analyses showed an increase in the specific surface area and a decrease in the band gap energy of the nanocomposite when compared with those of MoS2. Nanocomposites with different component mass ratios were then synthesized, and MoS2/CNTs (10:1) was identified to have the best sonocatalytic activity. The results indicated that 70% of HCQ with the initial concentration of 20 mg/L could be degraded using 0.1 g/L of MoS2/CNTs (10:1) nanocomposite within 120 min of sonocatalysis at the pH of 8.7 (natural pH of the HCQ solution). The dominant reactive species in the sonocatalytic degradation process were identified using various scavengers and the intermediates generated during the process were detected using GC–MS analysis, enabling the development of a likely degradation scheme. In addition, the results of consecutive sonocatalytic cycles confirmed the stability and reusability of this nanocomposite for sonocatalytic applications. Thus, our data introduce MoS2/CNTs nanocomposite as a proficient sonocatalyst for the treatment of pharmaceutical contaminants.  相似文献   

2.
A series of urchin-like CdS/ZrO2 nanocomposites with different mole ratios of Cd/Zr were prepared by a two-step method combining the microwave-assisted hydrothermal and ion exchange methods. The products were characterized by X-ray diffraction, ultraviolet–visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and N2 adsorption–desorption measurements. The results of the study revealed that the CdS/ZrO2 nanocomposites had mixed phases of tetragonal ZrO2 and hexagonal CdS. Moreover, the samples prepared by the microwave-assisted hydrothermal method possessed the urchin-like structure with a surface composed of protrude-like nanoparticles in large quantities. The absorption in the visible region changed slightly with increasing mole ratio of Cd/Zr. Moreover, compared to the nanocomposites prepared by the conventional heating, the nanocomposites prepared by the microwave-assisted hydrothermal synthesis showed significantly different Brunauer–Emmett–Teller values, and the urchin-like CdS/ZrO2 structures were obtained. The photocatalytic degradation of methyl orange under ultraviolet (UV) light irradiation indicated that the photocatalytic activity of the CdS/ZrO2 nanocomposite with CdS/ZrO2 molar ratio of 30 % was higher than those of CdS, ZrO2, and other different ratios of CdS/ZrO2 nanocomposites. Moreover, under UV light, visible light, and microwave-assisted multimode photocatalytic degradation, the urchin-like CdS/ZrO2 nanocomposites significantly affected the photodegradation of various dyes. To understand the possible reaction mechanism of the photocatalysis by the CdS/ZrO2 nanocomposites, a series of controlled experiments were performed, and the stability and reusability of the CdS/ZrO2 nanocomposites were further investigated by the photocatalytic reaction.  相似文献   

3.
Magnetic CoFe2O4@ZnS core-shell nanocomposite was successfully synthesized via one-step hydrothermal decomposition of zinc(II) diethanoldithiocarbamate complex over CoFe2O4 nanoparticles at low temperature of 200 °C. The obtained nanocomposite was characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, UV–Vis spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, magnetic measurements, and Brunauere-Emmette-Teller. The results confirmed the formation of CoFe2O4@ZnS nanocomposite with the average crystallite size of 18 nm. The band gap of 3.4 eV was obtained using UV–vis absorption of CoFe2O4@ZnS nanocomposite, which made it a suitable candidate for sono-/photo catalytic processes. This nanocomposite was applied as a novel sonocatalyst for the degradation of organic pollutants under ultrasound irradiation. The results showed complete degradation of methylene blue (MB) (25 mg/L) within 70 min in the presence of CoFe2O4@ZnS nanocomposite and H2O2 (4 mM). The trapping experiments indicated that OH radicals are the main active species in dye degradation. In addition, sonocatalytic activity of the CoFe2O4@ZnS nanocomposite was higher than those of pure ZnS and CoFe2O4, showing that the combining ZnS with magnetic CoFe2O4 could be an excellent choice to improve its sonocatalytic activity. The nanocomposite could be magnetically separated and reused without any observable change in its structure and performance even after five consecutive runs.  相似文献   

4.
The sonocatalytic performance of CeO2 nanoparticles synthesized by a hydrothermal method (CeO2-H) and CeO2@biochar (CeO2-H@BC) nanocomposite, were evaluated for the degradation of Reactive Red 84 (RR84) under ultrasonic irradiation. For comparison purposes the corresponding performance of bare biochar (BC) and commercial CeO2 (CeO2-C) samples were also assessed. A complementary characterization study, involving scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), N2 adsorption at −196 °C (Brunauer–Emmett–Teller (BET) method) and Fourier transform infrared spectroscopy (FT-IR) was undertaken to gain insight into the structure-performance relationships. The effect of various parameters such as initial RR84 concentration, solution pH, catalyst amount and ultrasonic power on the sonodegradation of RR84 was studied in detail. The results indicated that the CeO2-H@BC nanocomposite exhibited the best RR84 degradation efficiency, which is enhanced with the increase of CeO2-H@BC amount and ultrasonic power but diminished with the increment in RR84 concentration and pH value. A 98.5% degradation was obtained with a CeO2-H@BC amount of 1 g/L, ultrasonic power of 450 W, pH of 6.5 and initial RR84 concentration of 10 mg/L. The quenching effects of various scavengers proposed that OH radical plays the key role in the process. Analyses of intermediates by Gas chromatography-Mass spectroscopy (GC–MS) identified several by-products and accordingly the main pathway was proposed.  相似文献   

5.
The fabrication of hetero structured materials with supercapacitor applications for industrial use remains a key challenge. This work reports a new supercapacitor material with high capacitance, comprising samaria and borazon (O3Sm2/BN) synthesized ultrasonically (40 ± 3 kHz, 200 W). The successful synthesis, probable interfaces between O3Sm2 and BN and thermal stability of the nanocomposite were studied by UV–Vis. and FT-IR spectroscopies, X-ray diffraction (XRD) and thermo gravimetric analyses (TGA). The morphology of nanocomposite was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Elemental mapping analysis and energy dispersive X-ray analysis (EDAX) confirmed the elements present in the material. This supercapacitor material shows a maximum discharge capacitance of 414 Fg−1 at 0.25 Ag−1 and an exceptional retention of specific capacitance (92.5%) in 5000 cycles. Such nanocomposite with better specific capacitance and charge/discharge rates makes it a right candidate as next generation supercapacitor, which certainly finds applications in various unconventional energy storage devices.  相似文献   

6.
In 2003, Babin et al. theoretically predicted (J. Appl. Phys. 94:4244, 2003) that fabrication of organic–inorganic hybrid materials would probably be required to implement structures with multiple photonic band gaps. In tune with their prediction, we report synthesis of such an inorganic–organic nanocomposite, comprising Cu4O3–CuO–C thin films that experimentally exhibit the highest (of any known material) number (as many as eleven) of photonic band gaps in the near infrared. On contrary to the report by Wang et al. (Appl. Phys. Lett. 84:1629, 2004) that photonic crystals with multiple stop gaps require highly correlated structural arrangement such as multilayers of variable thicknesses, we demonstrate experimental realization of multiple stop gaps in completely randomized structures comprising inorganic oxide nanocrystals (Cu4O3 and CuO) randomly embedded in a randomly porous carbonaceous matrix. We report one step synthesis of such nanostructured films through the metalorganic chemical vapor deposition technique using a single source metalorganic precursor, Cu4(deaH)(dea)(oAc)5???(CH3)2CO. The films displaying multiple (4/9/11) photonic band gaps with equal transmission losses in the infrared are promising materials to find applications as multiple channel photonic band gap based filter for WDM technology.  相似文献   

7.
We have focused on the structural and magnetic properties of hazardous acid free synthesis of anatase titanium dioxide (TiO2) phase nanoflower and reduced graphene oxide-TiO2 (rGO-TiO2) nanocomposite using hydrothermal process. Because, strong acids free synthesis is environmental friendly and reduce overall cost of synthesized samples. In the synthesis of rGO-TiO2, synthesized TiO2 nanoflower and graphene oxide (GO) were used as reagents. The resulting materials have analyzed using different techniques such as, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and Fourier Transformation Infrared spectrophotometer for confirmation of flower like morphology, crystalline phase and chemical composition. Moreover, VSM analysis has revealed the ferromagnetism induced in the rGO-TiO2 composite at room temperature. The values of saturation magnetization were found to be 0.002 and ~ 0.243±0.04 emu/g for TiO2 nanoflower and rGO-TiO2 nanocomposite, respectively. In comparison of pure TiO2, rGO-TiO2 exhibited larger magnetization at room temperature. This is because presences of various edge and site defects such as topological and point defects like vacancies, which create localized unpaired spins in reduced graphene oxide (rGO), induce the ferromagnetism behavior in rGO-TiO2 nanocomposite.  相似文献   

8.
In this work, highly activated graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite adsorbent was prepared from a simple hydrothermal route by using ferrous sulfate as precursor. For this purpose, the graphene oxide/multiwalled carbon nanotube architectures were formed through the π-π attractions between them, followed by attaching Fe3O4 nanoparticles onto their surface. The structure and composition of as-prepared ternary nanocomposite were characterized by XRD, FTIR, XPS, SEM, TEM, Raman, TGA, and BET. It was found that the resultant porous graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite with large surface area could effectively prevent the π-π stacking interactions between graphene oxide nanosheets and greatly improve sorption sites on the surfaces. Thus, owing to the unique ternary nanocomposite architecture and synergistic effect among various components, as-prepared ternary nanocomposite exhibited high separation efficiency when they were used to remove the Cu (II) and methylene blue from aqueous solutions. Furthermore, the adsorption isotherms of ternary nanocomposite structures for Cu (II) and methylene blue removal fitted the Langmuir isotherm model. This work demonstrated that the graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite was promising as an efficient adsorbent for heavy metal ions and organic dye removal from wastewater in low concentration.  相似文献   

9.
Efficient hydrogen production through water splitting has been the challenging task to be achieved in the present context of energy crisis. Among the various catalysts employed, nitrogen doped Titanium dioxide/Reduced graphene oxide (N-TiO2/RGO) nanocomposite has been established to be a promising photocatalytic material for this purpose. However, nuances of doping nitrogen on TiO2 and the type of nitrogen (pyridinic, pyrrolic and graphitic) stabilized on RGO responsible for facilitating the H2 production has not yet been addressed mechanistically. In the present investigation, an attempt has been made to synthesise N-Titanium dioxide/N-Reduced graphene oxide (NTNG) nanocomposite under ultrasonication followed by hydrothermal treatment. A stainlesssteel ultrasonic bath, of 6.5 L tank size (LxBxH) 300 × 150 × 150 mm, was used for ultrasonic treatments. The transducers located at the bottom of the ultrasonic bath generate a frequency of 40 kHz with maximum power of 200 W. A mechanism has been proposed including the nuances of formation and the stabilisation of each type of nitrogen on N-RGO as a function of ultrasonication time. The present work supports the stabilization of a given type of nitrogen on RGO through keto enol tautomerism. XPS and FTIR studies have been undertaken to identify the different types of nitrogen doping and the presence of functional groups respectively. XRD, UV–Vis DRS and PL investigations have been made to establish morphological profile and band gap structure of the nanocomposite. It was observed that pyrrolic type nitrogen stabilized on N-RGO augments the efficiency of photocatalytic activity through hydrogen production by water splitting.  相似文献   

10.
TiO2-core/ZnO-shell nanorods were synthesized using a two-step process: the synthesis of TiO2 nanorods using a hydrothermal method followed by atomic layer deposition of ZnO. The mean diameter and length of the nanorods were ~300 nm and ~2.3 μm, respectively. The cores and shells of the nanorods were monoclinic-structured single-crystal TiO2 and wurtzite-structured single-crystal ZnO, respectively. The multiple networked TiO2-core/ZnO-shell nanorod sensors showed responses of 132–1054 % at ethanol (C2H5OH) concentrations ranging from 5 to 25 ppm at 150 °C. These responses were 1–5 times higher than those of the pristine TiO2 nanorod sensors at the same C2H5OH concentration range. The substantial improvement in the response of the pristine TiO2 nanorods to C2H5OH gas by their encapsulation with ZnO may be attributed to the enhanced absorption and dehydrogenation of ethanol. In addition, the enhanced sensor response of the core–shell nanorods can be attributed partly to changes in resistance due to both the surface depletion layer of each core–shell nanorod and the potential barriers built in the junctions caused by a combination of homointerfaces and heterointerfaces.  相似文献   

11.
Layered stacks of the structure Si(100)/Ni/BCxNy were produced by physical (Ni) and chemical (BCN) vapor deposition. The BCN layers were deposited at temperatures of 200, 300, 400, and 500 °C. The resulting samples were characterized by ellipsometry, X‐ray photoelectron spectrometry, secondary ion mass spectrometry, atomic force microscopy, and X‐ray reflectometry. The formed structures of the samples synthesized at 200 and 500 °C, respectively, were determined. For the synthesis temperature of 200 °C, compounds with Ni–C bonds were found at the interface Ni/BCxNy. For the sample produced at 500 °C, compounds with Ni–Si bonds were identified, dispersed as particles or droplets in the corresponding interface. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Herein, we demonstrate a facile one-step hydrothermal synthesis route to anchor ZnO nanoparticles on nitrogen and sulfur co-doped graphene sheets. The detailed material and electrochemical characterization have been carried out to demonstrate the potential of novel ZnO/NSG nanocomposite in Li-ion battery (LIBs) applications. The structure and morphology of nanocomposite were assessed by X-ray diffraction (XRD), Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The as-synthesized ZnO/NSG nanocomposite has been studied as anode material in LIBs and delivered a high initial discharge capacity of 1723 mAh g?1, at the current density of 200 mA g?1. After 100 cycles, the ZnO/NSG nanocomposites demonstrated a high reversible capacity of 720 mAh g?1 and coulombic efficiency of 99.8%, which can be attributed to the porous three-dimensional network, constructed by ZnO nanoparticles and nitrogen and sulfur co-doped graphene. Moreover, the designed nanocomposite has shown excellent rate capability and lower charge transfer resistance. These results are promising and encourage further research in the area of ZnO-based anodes for next-generation LIBs.  相似文献   

13.
TiO2-biochar (TiO2-BC) nanocomposite was synthesized by sol-gel method. The characteristics of the prepared nanocomposite were examined using X-ray fluorescence, scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and N2 adsorption-desorption analysis. The performance of synthesized TiO2-BC nanocomposite as efficient sonocatalyst was studied for the degradation of Reactive Blue 69 (RB69). Sonocatalytic degradation of RB69 in the presence of TiO2-BC nanocomposite could be explained by the mechanisms of hot spots and sonoluminescence. The optimized values for main operational parameters were determined as pH of 7, TiO2-BC dosage of 1.5 g/L, RB69 initial concentration of 20 mg/L and ultrasonic power of 300 W. Furthermore, the effect of OH, h+ and O2 scavengers on the RB69 degradation efficiency was studied. Gas chromatography-mass spectroscopy analysis was used to identify intermediate compounds formed during the RB69 degradation. The results of repeated applications of TiO2-BC in the sonocatalytic process verified its stability in long-term usage.  相似文献   

14.
A low cost hydrothermal synthesis method to synthesize Mn‐doped ZnO nanorods (NRs) with controllable morphology and structure has been developed. Ammonia is used to tailor the ammonium hydroxide concentration, which provides a source of OH for hydrolysis and precipitation during the growth instead of HMT. The morphological, chemical composition, structural, and electronic structure studies of the Mn‐doped ZnO NRs show that the Mn‐doped ZnO NRs have a hexagonal wurtzite ZnO structure along the c‐axis and the Mn ions replace the Zn sites in the ZnO NRs matrix without any secondary phase of metallic manganese element and manganese oxides observed. The fabricated PEDOT:PSS/Zn0.85Mn0.15O Schottky diode based piezoresistive sensor and UV photodetector shows that the piezoresistive sensor has pressure sensitivity of 0.00617 kPa–1 for the pressure range from 1 kPa to 20 kP and 0.000180 kPa–1for the pressure range from 20 kPa to 320 kPa with relatively fast response time of 0.03 s and the UV photodetector has both relatively high responsivity and fast response time of 0.065 A/W and 2.75 s, respectively. The fabricated Schottky diode can be utilized as a very useful human‐friendly interactive electronic device for mass/force sensor or UV photodetector in everyday living life. This developed device is very promising for small‐size, low‐cost and easy‐to‐customize application‐specific requirements. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

15.
A composite of polythiophene (PT) and nano-titanium dioxide (TiO2), possessing core–shell structure, was synthesized via oxidative polymerization of thiophene using FeCl3 in the presence of three different surfactants: anionic, cationic, and nonionic. The morphology of the obtained composite materials was investigated by SEM, proving the core–shell structure of the prepared nanocomposite. The formation and thermal stability of the PT onto TiO2 nanoparticles were confirmed by FTIR and TGA analyses, respectively. XRD data show all of composite materials were amorphous structures. The electrical properties of the nanocomposites were investigated in the presence of surfactant materials, and the best semiconductor property was observed for PT/TiO2-anionic system. This difference in the conductivity has been attributed to differences in the stability of the composites.  相似文献   

16.
Zinc oxide/hydroxide nanocomposite materials are synthesized by pulsed laser ablation of zinc in double distilled water. Effect of simultaneous flow of oxygen in the closed vicinity of laser ablated plasma plume on the size, morphology, crystallinity, and composition of synthesized oxide/hydroxide nanocomposite structures is investigated. As synthesized nanocomposite materials are characterized using UV–visible absorption, Scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), Differential thermal analysis (DTA), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and photoluminescence spectroscopic methods. It is observed that injection of oxygen induces a new mechanism in the particle synthesis, which causes decrease in particle size, distribution as well as Zn(OH)2/ZnO ratio and increase of order of crystallinity of product. There are some novel findings in the direction of development of pulsed laser ablation in aqueous media (PLAAM) for the synthesis of nanostructured materials.  相似文献   

17.
Herein, we report a one-pot synthesis of structurally uniform and electrochemically active graphitic carbon nitride/nickel oxide (g-C3N4/NiO) nanocomposite and an investigation on the electrocatalytic oxidation of quercetin (QR). The synthesized g-C3N4/NiO nanocomposite has uniform surface distribution, which was characterized with scanning electron microscopy (SEM). Moreover, the composition of synthesized g-C3N4/NiO nanocomposite was characterized by UV–vis-spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR spectra), BET, SEM and HRTEM. The g-C3N4/NiO was electrochemically treated in 0.1 MPBS solution through cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The peak current response increases linearly with QR concentration from 0.010 μM to 250 µM with a fast response time of less than 2 s and a detection limit of 0.002 μM. To further evaluate the feasibility of using this sensor for real sample analysis, QR content in various real samples including green tea, green apple, honey suckle were determined and satisfactory results were achieved.  相似文献   

18.
A scalable synthesis of magnetic core–shell nanocomposite particles, acting as a novel class of magnetic resonance (MR) contrast agents, has been developed. Each nanocomposite particle consists of a biocompatible chitosan shell and a poly(methyl methacrylate) (PMMA) core where multiple aggregated γ‐Fe2O3 nanoparticles are confined within the hydrophobic core. Properties of the nanocomposite particles including their chemical structure, particle size, size distribution, and morphology, as well as crystallinity of the magnetic nanoparticles and magnetic properties were systematically characterized. Their potential application as an MR contrast agent has been evaluated. Results show that the nanocomposite particles have good stability in biological media and very low cytotoxicity in both L929 mouse fibroblasts (normal cells) and HeLa cells (cervical cancer cells). They also exhibited excellent MR imaging performance with a T2 relaxivity of up to 364 mMFe?1 s?1. An in vivo MR test performed on a naked mouse bearing breast tumor indicates that the nanocomposite particles can localize in both normal liver and tumor tissues. These results suggest that the magnetic core–shell nanocomposite particles are an efficient, inexpensive and safe T2‐weighted MR contrast agent for both liver and tumor MR imaging in cancer therapy.  相似文献   

19.
A novel core–shell nanocomposite Ni–Ca@mSiO2 was first prepared by a modified Stöber method in this paper. It has a core–shell structure with Ni (about 8 nm in diameter) and Ca as the cores and mesoporous silica as the outer shell, as proven by the transmission electron microscopy. This nanocomposite exhibited good catalytic performance in the selective hydrogenation of benzophenone, with 96.1% conversion and 94.9% selectivity for benzhydrol under relatively mild reaction conditions. It was demonstrated that addition of small amounts of alkaline Ca can not only markedly improve the dispersion of the active species but also tune the acid–base property of this nanocomposite, resulting in the efficient suppression of benzhydrol dehydration to achieve a high selectivity. Furthermore, the core–shell nanocomposite Ni–Ca@mSiO2 can be recycled four runs without appreciable loss of its initial activity, more stable than the traditional supported nanocatalyst Ni–Ca/mSiO2. It was suggested that the outer mesoporous silica shell of Ni–Ca@mSiO2 can prevent both the aggregation and the leaching of the active Ni species, accounting for its relatively good stability.
Graphical abstract A magnetic core–shell nanocomposite Ni–Ca@mSiO2 exhibited good activity, selectivity, and reusability in benzophenone selective hydrogenation.
  相似文献   

20.
《Current Applied Physics》2018,18(12):1546-1552
The polymer nanocomposite as a gate dielectric film was prepared via sol-gel method. The formation of cross-linked structure among nanofillers and polymer matrix was proved by Fourier transform infrared spectroscopy (FT-IR). Differential thermal analysis (DTA) results showed significant increase in the thermal stability of the nanocomposite with respect to that of pure polymer. The nanocomposite films deposited on the p- and n-type Si substrates formed very smooth surface with rms roughness of 0.045 and 0.058 nm respectively. Deconvoluted Si2s spectra revealed the domination of the SiOH hydrogen bonds and SiOSi covalence bonds in the structure of the nanocomposite film deposited on the p- and n-type Si semiconductor layers respectively. The fabricated n-channel field-effect-transistor (FET) showed the low threshold voltage and leakage currents because of the stronger connection between the nanocomposite and n-type Si substrate. Whereas, dominated hydroxyl groups in the nanocomposite dielectric film deposited on the p-type Si substrate increased trap states in the interface, led to the drop of FET operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号