首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
密封容器组合壳自由振动的精确解   总被引:4,自引:0,他引:4  
给出了一类密封容器组合壳自由振动问题的精确解,基于Love经典薄壳理论,导出了具有任意经线形状的旋转壳体在轴对称振动时的基本方程,组合壳结构中球壳与柱壳的连接条件是通过连接处的变形连续性和内力平衡关系得出的。问题的数学模型被归结为常微分方程组在球壳和 壳两个区间上的特征值问题。振动模态函数是由Legendre和三角函数构造出来,并且得到了精确的频率方程。所有的计算都是在Maple程序下运行的,无论是精确的符号运算还是具有所需有效数学精度的数值计算,都表明该文所编译的Maple程序是简单而有效的。固有频率的数值结果同文献中有限元法和其它数值方法的结果作了比较。作为一个标准,该文给出的精确解对于检验各种近似方法的精密度是有价值的。  相似文献   

2.
Based on the refined Timoshenko theory, a semi-analytic method for solving problems of statics of orthotropic noncircular cylindrical shells is developed. The essence of this method consists in the spline-approximation of a solution in one coordinate direction and utilization of the collocation method and numerical solution of a high-order one-dimensional boundary-value problem by the discrete orthogonalization method in the second direction. The state of stress and strain of an open elliptic cylindrical shell under external load is investigated in the case where three contours rest upon supports and the fourth contour is rigidly fixed. Bibliography: 4 titles. Translated fromObchyslyuval’na ta Prykladna Matematyka, No. 76, 1992, pp. 67–70.  相似文献   

3.
We solve the problem of the determination of the stress state under torsional vibrations of a half-space with a cylindrical defect (a crack or a thin rigid inclusion) that crosses its surface. The method of solution is based on the use of discontinuous solutions of the equations of torsional vibrations and consists in the reduction of the initial boundary-value problems to integral equations for the unknown jumps of an angular displacement or a tangential stress.  相似文献   

4.
In the cylindrical coordinate system, we construct an exact solution of the threedimensional thermoelasticity problem for a tank filled with a liquid. After determining the temperature field from the heat conduction equation, we solve the equations of the asymmetrical problem of the theory of elasticity. In doing so, the system of resolving equations is reduced to four separate equations with respect to the displacements of the construction. Several exact solutions of boundary-value problems are found. The results are presented in the form of rather simple formulas.  相似文献   

5.
A method for constructing defining relations of the linear theory of shells of revolution in complex Hamiltonian form has been proposed. Based on the Lagrange variational principle, we have constructed a mathematical model of a multilayer orthotropic shell of revolution. We have obtained explicit expressions for the coefficients and right-hand sides of the Hamiltonian complex system of equations describing the statics of shells of revolution in terms of their rigid characteristics and acting loads. The Hamiltonian resolving system of linear differential equations, formulated in the axially symmetric case, has some specific properties facilitating both analytical studies and numerical procedures of their solution.  相似文献   

6.
In this paper, we address some fundamental issues concerning “time marching” numerical schemes for computing steady state solutions of boundary value problems for nonlinear partial differential equations. Simple examples are used to illustrate that even theoretically convergent schemes can produce numerical steady state solutions that do not correspond to steady state solutions of the boundary value problem. This phenomenon must be considered in any computational study of nonunique solutions to partial differential equations that govern physical systems such as fluid flows. In particular, numerical calculations have been used to “suggest” that certain Euler equations do not have a unique solution. For Burgers' equation on a finite spatial interval with Neumann boundary conditions the only steady state solutions are constant (in space) functions. Moreover, according to recent theoretical results, for any initial condition the corresponding solution to Burgers' equation must converge to a constant as t → ∞. However, we present a convergent finite difference scheme that produces false nonconstant numerical steady state “solutions.” These erroneous solutions arise out of the necessary finite floating point arithmetic inherent in every digital computer. We suggest the resulting numerical steady state solution may be viewed as a solution to a “nearby” boundary value problem with high sensitivity to changes in the boundary conditions. Finally, we close with some comments on the relevance of this paper to some recent “numerical based proofs” of the existence of nonunique solutions to Euler equations and to aerodynamic design.  相似文献   

7.
The effect of inhomogeneity of elastic properties in the circumferential direction on the distribution of stress and displacement fields in orthotropic cylindrical panels is studied. The mechanical properties of the panels and the load acting on them are constant in the axial direction, which makes it possible to neglect the influence of the curvilinear ends. From the initial relations of a three-dimensional problem of the elasticity theory of inhomogeneous anisotropic bodies, a resolving system of partial differential equations is obtained, whose solution is presented in the form of truncated Fourier series, so that the conditions of free support of the rectilinear ends are satisfied. This allows us to separate the variables and to get a system of ordinary high-order differential equations, which is integrated by a stable numerical method. The problem on the stress-strain state of an orthotropic composite panel with a varying relative volume content of reinforcing elements in the circumferential direction is solved. The effect of the change in the reinforcement density on the stresses and displacements of the panel is studied.  相似文献   

8.
In this work, we give an introduction to the theory of nonlinear functional differential equations of pointwise type on a finite interval, semi-axis, or axis. This approach is based on the formalism using group peculiarities of such differential equations. For the main boundary-value problem and the Euler-Lagrange boundary-value problem, we consider the existence and uniqueness of the solution, the continuous dependence of the solution on boundary-value and initial-value conditions, and the “roughness” of functional differential equations in the considered boundary-value problems. For functional differential equations of pointwise type we also investigate the pointwise completeness of the space of solutions for given boundary-value conditions, give an estimate of the rank for the space of solutions, describe types of degeneration for the space of solutions, and establish conditions for the “smoothness” of the solution. We propose the method of regular extension of the class of ordinary differential equations in the class of functional differential equations of pointwise type. __________ Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 8, Functional Differential Equations, 2004.  相似文献   

9.
We propose a mathematical model that makes it possible to reduce the problem of the stressed state and limit equilibrium of a cylindrical anisotropic elastoplastic shell with internal crack to a system of nonlinear singular integral equations with discontinuous functions on the right-hand sides. We construct an algorithm for numerical solution of such systems together with the conditions of plasticity and boundedness of stresses near the crack. For a transversally isotropic shell, we carry out a numerical analysis of the dependence of the opening of the internal crack front on the load and geometric and mechanical parameters. Pidstryhach Institute of Applied Problems in Mechanics and Mathematics, Ukrainian Academy of Sciences L'viv. Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 41, No. 2, pp. 111–116, April–June, 1998  相似文献   

10.
A structure in the form of two coaxial cylindrical shells with different radii, joined by a stiffening ring either rigidly or by hinges, is considered. Starting out from improved equations of general form constructed earlier, a linearized contact problem is formulated that enables all possible classical and non-classical forms of loss of stability to be investigated in the case of axisymmetric forms of loading of the structure. The initial relations of the problem are transformed to an equivalent system of integro-algebraic equations containing integral Volterra-type operators by integrating along the longitudinal coordinate and representing the two-dimensional and one-dimensional required unknowns introduced into the treatment in the form of the sum of trigonometric functions in the circumferential coordinate that, in changing into a perturbed state, allows the possibility of the shell deforming in antiphase forms. A numerical algorithm for constructing solutions of the resulting equations is proposed, based on the method of finite sums, that enables all the boundary conditions of the problem and the conditions for the joining of the shells with the stiffening ring to be satisfied exactly. Retaining and discarding parametric terms in the relations for the shells, the stability of a structure of the class considered is investigated in the case when an external pressure acts on the stiffening ring and, also, in the case of its axial tension during which the stiffening ring is found to be under wrench deformation conditions and, in a shell of larger diameter, subcritical circumferential compressive stresses are formed.  相似文献   

11.
S. Barlag  H. Rothert 《PAMM》2002,1(1):129-130
For the estimation of non‐linear numerical calculations, for example with the Finite Element Method, a procedure is useful to approach fast and directly the ideal buckling pressure and the critical buckling form. For this reason a nomogram is developed in order to pick off directly and fast the ideal buckling pressure and the appropriate circum ferential wave number. It is based on the stability equations for an orthotropic cylindrical shell. Alternatively some approximation functions are developed from the nomogram to get the critical circumferential wave number and the ideal buckling pressure.  相似文献   

12.
The problem on the stress-strain state of layered cylindrical shells with bottoms of intricate shape under the action of internal pressure is considered. The elastic system examined is formed by spiral-circular winding. Two variants of the shell bottom structure are investigated. In the first variant, one spiral layer is installed, which leads to great variations in the bottom thickness along the meridian. In the second one, the bottoms are formed according to the zone-winding scheme. The stress state of the shell constructions of the classes considered is determined by solving boundary-value problems for systems of ordinary differential equations. The solution results for cylindrical shells with elliptic bottoms for the two types of winding are given. It is shown that the zone winding leads to smaller deflections and stresses than the conventional ways of reinforcing shell bottoms.  相似文献   

13.
In this paper, the blood flow problem is considered in a blood vessel, and a coupling system of Navier–Stokes equations and linear elastic equations, Navier–Lame equations, in a cylinder with cylindrical elastic shell is given as the governing equations of the problem. We provide two finite element models to simulating the three-dimensional Navier–Stokes equations in the cylinder while the asymptotic expansion method is used to solving the linearly elastic shell equations. Specifically, in order to discrete the Navier–Stokes equations, the dimensional splitting strategy is constructed under the cylinder coordinate system. The spectral method is adopted along the rotation direction while the finite element method is used along the other directions. By using the above strategy, we get a series of two-dimensional-three-components (2D-3C) fluid problems. By introduce the S-coordinate system in E3 and employ the thickness of blood vessel wall as the expanding parameter, the asymptotic expansion method can be established to approximate the solution of the 3D elastic problem. The interface contact conditions can be treated exactly based on the knowledge of tensor analysis. Finally, numerical test shows that our method is reasonable.  相似文献   

14.
The problem of stability of orthotropic noncircular cylindrical shells whose cross section can be described by a function in the form of superposition of a constant and a multiperiodic cosinusoid is considered. The solution of this problem is based on a rigorous consideration of the shell geometry and on the representation of the resolving functions in terms of trigonometric series in the circumferential coordinate. The determination of the bifurcation load is reduced to finding the minimum eigenvalue of a sequence of infinite systems of homogeneous algebraic equations. The effect of corrugation on the critical load of thin glass- and boron-reinforced shells of arbitrary length is analyzed. The data on the efficiency of corrugated shells, in comparison with circular ones, in relation to the mechanical properties of materials are obtained. The accuracy of the calculation procedure is estimated in the case where the corrugated shell is simulated by an equivalent circular one.  相似文献   

15.
On the basis of functions of generalized complex variables that are exact solutions of the three-dimensional equations of the theory of elasticity of an orthotropic body, we construct the solution for studying the stress state of a plate with elliptic cavities. We use the projection-grid method on the transverse coordinate. As basis functions we have chosen functions of compact support. We have carried out numerical studies for a plate with one elliptic cavity. Three tables. Bibliography: 8 titles. Translated fromTeoreticheskaya i Prikladnaya Mekhanika, No. 26, 1996, pp. 20–27.  相似文献   

16.
The problem of stationary heat conduction of laminated plates of constant and variable thickness is formulated in the three-dimensional statement. We reduce the three-dimensional problem to a twodimensional one by the method of initial functions. For plates with layers of variable thickness, a system of resolving equations with variable coefficients is obtained. The obtained two-dimensional boundary-value problems are analyzed. For plates with homogeneous layers of constant thickness, we construct a solution in an analytic form. It is shown that this solution coincides with a solution obtained by the method of separation of variables.  相似文献   

17.
The basic geometric and physical relations and resolving equations of the theory of thin and nonthin orthotropic composite shells with account of nonlinear properties and low shear rigidity of their materials are presented. They are derived based on two theories, namely the theory of anisotropic shells employing the Timoshenko or Kirchhoff-Love hypothesis and the nonlinear theory of elasticity and plasticity of anisotropic media in combination with the Lagrange variational principle. The procedure and algorithm for the numerical solution of nonlinear (linear) problems are based on the method of successive approximations, the difference-variational method, and the Lagrange multiplier method. Calculations of the stress-strain state for a spherical shell with a circular opening loaded with internal pressure are presented. The effect of transverse shear strains and physical nonlinearity of the material on the distribution of maximum deflections and circumferential stresses in the shell, obtained according to two variants of the shell theories, is studied. A comparison of the results of the problem solution in linear and nonlinear statements with and without account of the shell shear strains is given. The numerical data obtained for thin and nonthin (medium thick) composite shells are analyzed.  相似文献   

18.
The problem of the existence of natural oscillations of a thin elastic orthotropic circular closed cylindrical shell with free and hinge-mounted ends and of an open cylindrical shell with free and hinge-mounted edges, when the two boundary generatrices are hinge-mounted is investigated. Dispersion equations and asymptotic formulae for finding the natural frequencies of possible vibration modes are obtained using the system of equations corresponding to the classical theory of orthotropic cylindrical shells. A mechanism is proposed by means of which the vibrations can be separated into possible types. Approximate values of the dimensionless characteristic of the natural frequency and the attenuation characteristic of the corresponding vibration modes are obtained using the examples of closed and open orthotropic cylindrical shells of different lengths.  相似文献   

19.
On the basis of the Timoshenko kinematic hypothesis for shells we give a formulation of the problem of studying the stress-strain state of orthotropic plates and shells weakened by a combined stress concentrator (a hole with two symmetric cracks extending to its edge). We propose a method of solving such problems on the basis of the finite-element method. To simulate the singularity of the stresses and displacements in a neighborhood of the tip of a crack we apply special finite elements with degenerate faces and nodes displaced by 1/4 the length of an edge. The stress intensity factors are found in terms of the displacements of the nodes of such elements. We give the results of computation of the concentration coefficients and the stress intensity factors for spherical and cylindrical shells loaded by internal pressure and for a cylindrical shell and a plate under the action of a distending load with various concentrators: a circular hole, an isolated crack, and a combined concentrator. Translated fromTeoreticheskaya i Prikladnaya Mekhanika, No. 23, 1992, pp. 48–54.  相似文献   

20.
An approach is proposed to solving linear boundary-value problems for shells of revolution that are closed in the circumferential direction, with complex boundary conditions in which the coefficients of the solving functions depend on the circumferential coordinate. The approach relies on reduction of the boundary-value problem to a number of boundary-value problems for systems of ordinary differential equations and systems of algebraic equations. We solve a specific problem for the stressed state of a conical shell with one of its ends supported by an elastic foundation with a variable modulus.Institute of Mechanics, Ukrainian Academy of Sciences. Translated from Vychislitel'naya i Prikladnaya Matematika, No. 68, pp. 85–93, 1989.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号