首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work considers the effect of vacuum annealing on the thermoelectric properties of Sb0.9Bi1.1Te2.9Se0.1 thin film and Sb0.9Bi1.1Te2.9Se0.1–C composites with various carbon contents produced by ion-beam deposition in an argon atmosphere. The electrical resistivity and the thermopower of Sb0.9Bi1.1Te2.9Se0.1–C nanocomposites are found to be dependent on not only the carbon concentration but also the type and the concentration of intrinsic point defects of the Sb0.9Bi1.1Te2.9Se0.1 solid solution, which determine the type of conductivity of Sb0.9Bi1.1Te2.9Se0.1 granules. The power factors are estimated for films of Sb0.9Bi1.1Te2.9Se0.1 solid solution and films of Sb0.9Bi1.1Te2.9Se0.1–C composites and found to have values comparable with the values for nanostructured materials on the basis of (Bi,Sb)2(Te,Se)3 solid solutions.  相似文献   

2.
The temperature dependence of the Hall coefficient of a single crystal of the p-Sb2Te2.9Se0.1 solid solution grown by the Czochralski technique is studied in the temperature range 77–450 K. The data on the Hall coefficient of the p-Sb2Te2.9Se0.1 are analyzed in combination with the data on the Seebeck and Nernst–Ettingshausen effects and the electrical conductivity with allowance for interband scattering. From an analysis of the temperature dependences of the four kinetic coefficients, it follows that, at T < 200 K, the experimental data are qualitatively and quantitatively described in terms of the one-band model. At higher temperatures, a complex structure of the valence band and the participation of the second-kind additional carriers (heavy holes) in the kinetic phenomena should be taken into account. It is shown that the calculations of the temperature dependences of the Seebeck and Hall coefficients performed in the two-band model agree with the experimental data with inclusion of the interband scattering when using the following parameters: effective masses of the density of states of light holes md1*≈ 0.5m0 (m0 is the free electron mass) and heavy holes md2*≈ 1.4m0, the energy gap between the main and the additional extremes of the valence band ΔEv ≈ 0.14 eV that is weakly dependent on temperature.  相似文献   

3.
A technology has been developed for the preparation of thin films of the Bi2Te2.7Se0.3 solid solution through the thermal evaporation in a vacuum using the “hot-wall” method. The high quality of the thin films thus prepared has been confirmed by the X-ray diffraction and Raman scattering data. The electron transport has been investigated over wide ranges of temperatures (1.4–300 K) and magnetic fields (up to 8 T). It has been assumed that the observed weak antilocalization is associated with the dominant contribution from the surface states of a topological insulator. The dephasing length has been estimated.  相似文献   

4.
The effect the conditions of preparing thermoelectric solid solutions of Bi0.5Sb1.5Te3 + 0.06 wt % Pb by hardening from the liquid state with subsequent hot pressing have on their thermoelectric properties is studied. It is found that the optimum thermoelectric quality factors are achieved at a 2200–2800 rpm rate of copper disc rotation.  相似文献   

5.
We have investigated the structural and thermoelectric properties of (Sb1-xBix)2Te3 thin films on CdTe(111)B. Analysis of X-ray diffraction patterns (–2 scans and rocking curves) of the films shows that they are of high quality and that they are well aligned with their (00.1) axis normal to the substrates. Measurements of the temperature-dependent thermoelectric power, resistivity, and Hall coefficient of the films were performed with respect to the binary composition, x. For the samples in the range 0.2<x<0.3, the room-temperature thermopower values were in the range 159–184 V/K, the room-temperature carrier concentrations were 3.93–5.13×1019 cm-3, and the room-temperature mobilities were 24.6–64.0 cm2V-1s-1. PACS 72.20.Pa; 72.80.Jc; 73.6l.Le  相似文献   

6.
The magnetoconductivity of thin Bi2Se3 films covered by a protective Se layer and grown at (111) BaF2 substrates is studied. It is shown that the negative magnetoconductivity observed at low magnetic fields and caused by the effect of weak antilocalization, as well as the Shubnikov?de Haas oscillations at higher fields, is determined only by the magnetic field component perpendicular to the film plane. The obtained experimental results can be reasonably interpreted under the assumption that the studied films exhibit two-dimensional topologically protected electron states. Moreover, the contribution of these states to the total conductivity turns out to be the dominant one.  相似文献   

7.
Thin films of Sb2Te3 and (Sb2Te3)70(Bi2Te3)30 alloy and have been deposited on precleaned glass substrate by thermal evaporation technique in a vacuum of 2?×?10?6 Torr. The structural study was carried out by X-ray diffractometer, which shows that the films are polycrystalline in nature. The grain size, microstrain and dislocation density were determined. The Seebeck coefficient was determined as the ratio of the potential difference across the films to the temperature difference. The power factor for the (Sb2Te3)70 (Bi2Te3)30 and (Sb2Te3) is found to be 19.602 and 1.066 of the film of thickness 1,500 Å, respectively. The Van der-Pauw technique was used to measure the Hall coefficient at room temperature. The carrier concentration was calculated and the results were discussed.  相似文献   

8.
In this paper, we study Ge2Sb2Te5 phase-change film as a promising inorganic photoresist using organic alkaline: tetramethylammonium hydroxide (TMAH) solution, instead of inorganic alkali or acid as etchant. The basic etching properties are investigated by prior and posterior annealing Ge2Sb2Te5 films. Selectivity is found to be dependent on concentration of TMAH. There is a good selectivity in the 25% TMAH solution, in which the amorphous state is etched away, whereas the crystalline state remains. The etching rate decreases when the concentration of TMAH is diluted; and an opposite selectivity, compared with 25% TMAH solution, is observed in the 0.125% TMAH solution. Selective etching with laser crystallization in different power levels is also studied, and an excellent wet selectivity in the 25% TMAH solution is obtained. The remaining crystalline lines are observed by atomic force microscopy. The surface roughness after etching is at a good level. The selective wet-etching mechanism is also discussed.  相似文献   

9.
Spectra of optical absorption in Bi0.5Sb1.5Te3 films grown on mica and KBr substrates have been investigated for T = 145 and 300 K. The data obtained have been analyzed together with the data of investigations on the fundamental absorption edge for Bi2Te3 available in the scientific literature. It has been revealed that the interband absorption spectra for both Bi0.5Sb1.5Te3 and Bi2Te3 represent a superposition of two components corresponding to direct and indirect allowed optical transitions. In this case, the least energy gap separating the valence band and the conduction band is direct for Bi2−xSbxTe3 (x ≤ 1.5, T = 300 K). For Bi0.5Sb1.5Te3 the temperature variation rates have been estimated for the thresholds of direct and indirect interband transitions. It has been shown that this solid solution is direct gap solution at T ≥ 145 K. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 50–52, July, 2008.  相似文献   

10.
The effect of an ultrathin Pb film deposited on the surface of Bi2Se3 and Sb2Te3 compounds on the electronic state structure of topological insulators is studied experimentally by the angle-resolved photoemission spectroscopy (ARPES) technique. The following features are revealed: formation of two-dimensional quantum-well states in the near-surface region, an increase in the binding energy of the Dirac cone and the core levels, and a simultaneous electronic states intensity redistribution in the system in photoemission spectra. The results obtained show that topological states may coexist at the interface between studied materials and a superconductor, which seems to be promising for application in quantum computers.  相似文献   

11.
Preferential growth of different crystal planes in layered Bi2Te3 thin films with each layer <40 nm has been achieved by a simple magnetron co-sputtering method. The preferential growth of (015) plane or (001) was achieved at special depositing conditions due to the more sufficient growth along the in-plane direction induced by the enhanced diffusion of atoms and lower deposition rate. The Bi2Te3 film with preferential growth of (001) plane possesses about two times higher electrical conductivity and Seebeck coefficient as compared to the film with preferential growth of (015) plane, due to the greatly enhanced carrier mobility. Furthermore, the thermal conductivity has been suppressed due to more phonon scattering at grain boundaries, compared with ordinary Bi2Te3 alloys and films.  相似文献   

12.
J SHARMA  S KUMAR 《Pramana》2016,86(5):1107-1118
The effect of Ge additive on the physical and dielectric properties of Se75Te25 and Se85Te15 glassy alloys has been investigated. It is inferred that on adding Ge, the physical properties i.e., average coordination number, average number of constraints and average heat of atomization increase but lone pair electrons, fraction of floppy modes, electronegativity, degree of crosslinking and deviation of stoichiometry (R) decrease. The effect of Ge doping on the dielectric properties of the bulk Se75Te25 and Se85Te15 glassy alloys has also been studied in the temperature range 300–350 K for different frequencies (1 kHz–5 MHz). It is found that, with doping, the dielectric constant ε and dielectric loss ε increase with increase in temperature and decrease with increase in frequency. The role of the third element Ge, as an impurity in the two pure binary Se75Te25 and Se85Te15 glassy alloys has been discussed in terms of the nature of covalent bonding and electronegativity difference between the elements used in making the aforesaid glassy systems.  相似文献   

13.
Using infrared spectroscopic ellipsometry (IRSE), the optical properties of the Ba0.9Sr0.1TiO3 (BST) ferroelectric thin films with different film thicknesses on Pt/Ti/SiO2/Si substrates prepared by a modified sol-gel method have been investigated in the 2.5–12.6 m wavelength range. By fitting the measured ellipsometric parameter ( and ) data with a three-phase model (Air/BST/Pt) and the classical dispersion relation for the BST thin films, the optical constants and thicknesses of the thin films have been obtained. The average thickness of the single layer decreases with increasing film thickness. The refractive index of the BST films decreases with increasing thickness in the wavelength range 2.5–11 m, and increases with increasing thickness in the wavelength range 11–12.6 m. However, the extinction coefficient of the BST films monotonously decreases with increasing thickness. It is closely associated with the crystallinity of the thin films, the crystalline size effect and the influence of the interface layer. The absorption coefficient of the BST films with different thicknesses decreases with increasing thickness. PACS 77.55.+f; 78.20.Ci; 78.30.Am; 81.70.Fy; 81.40.Tv  相似文献   

14.
The influence of the annealing temperature from the interval between the solidus and liquidus temperatures of Bi92Sb8 solid solution on its structure and galvanomagnetic and thermoelectric properties has been studied. It has been shown that films of bismuth–antimony solid solution grown by thermal evaporation in a vacuum will have a large-grained structure after annealing at temperatures higher than the solidus temperature of the solid solution. It has been found that these films offer the lowest resistivity, the highest relative magnetoresistance, and the highest mobility of charge carriers. As the annealing temperature approaches the liquidus temperature, the probability that a dendritic structure will form and antimony-enriched regions will appear grows. This causes an increase in the charge carrier concentration and a decrease in the resistivity with a decrease in the relative magnetoresistance and charge carrier mobility.  相似文献   

15.
We investigate the vibrational dynamics of a quantum mechanical resonator when an ensemble of laser pumped two-level emitters are fixed on it. Beyond the rotating wave approximation with respect to phonon’s variables, one can obtain an interesting phonon quantum dynamics if the quantum emitter’s variables are faster than those describing the mechanical resonator. Particularly, for certain parameters, one can obtain an enhanced phonon emission as well as larger phonon–phonon correlations in the steady state.  相似文献   

16.
Temperature dependences of thermoelectric parameters of the Pb0.22Sn0.78Te〈Ge(0.5 at%)〉 solid solution in the temperature range 140–440 K are investigated with the purpose to determine the perspectiveness of these solutions as a material for thermoelements.  相似文献   

17.
The use of surface active liquids facilitates intense stratification of mechanically strained Bi0.5Sb1.5Te3 crystallites. A Bi0.5Sb1.5Te3 heat element with specified thickness and structure is formed by layer-by-layer deposition of “thermoelectric ink” on its free surface. A heat treatment of the formed thermoelectric element in argon at a temperature of 800 K makes it possible to minimize radically the resistance of the grain boundaries introduced into its bulk.  相似文献   

18.
The present paper reports the comparative study of density of defect states (DOS) between bulk samples and thin films of glassy Se90Sb10. These glasses have been prepared by the quenching technique. Thin films of these glasses have been prepared by vacuum evaporation technique. Space-charge-limited conduction (SCLC) has been measured at different temperatures. The density of localized states near Fermi level is calculated by fitting the data to the theory of SCLC for the case of uniform distribution of localized states for bulk as well as for thin films. A comparison has been made between the density of states calculated in these two cases.  相似文献   

19.
The most narrow sub-Doppler frequency resonances in the linear absorption of monochromatic radiation that propagates in the normal direction through a cell containing a layer of rarefied gas medium with a thickness smaller than or on the order of the wavelength of this radiation are theoretically studied. The calculation is performed using as an example a three-dimensional gas cell shaped like a rectangular parallelepiped. It is shown that the width and amplitude of considered sub-Doppler resonances (in the vicinity of centers of rather weak quantum transitions) significantly depend on the transit relaxation of atomic particles, which is determined by their transit times through the irradiated region of the cell both in longitudinal and in transverse directions. The restrictions of the approximation of the planar one-dimensional cell that was previously used in such calculations are determined. Possible applications of linear absorption resonances in ultrathin (nanometer) gas cells as references for optical frequency standards are discussed.  相似文献   

20.
The electronic spectra and relative permittivity of ultrathin (1–3 QL) films of Bi2Se3 topological insulator have been calculated by the density functional theory. The calculated spectra exhibit a characteristic feature: the range of 0.0–0.9 eV below the Fermi level contains two doubly degenerate valence bands (“U-bands”), which are geometrically congruent to low-lying spectral branches in the conduction band. It has been shown that the saturation of optical absorption can result in a significant rearrangement of the electronic structure and properties in the near infrared spectral range in the considered film. In particular, the semiconductor (in the absence of interaction with light) type of conductivity of the film can be changed to the metallic type of conductivity strongly nonlinear in the intensity of light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号