首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
单轴旋转惯导系统转轴陀螺常值漂移综合校正方法   总被引:2,自引:0,他引:2  
为提高单轴旋转惯导系统长时间的导航工作精度,根据单轴旋转惯导误差方程阐述了单轴旋转惯导的自动补偿原理,指出转轴方向陀螺漂移是引起系统位置误差发散的最主要的误差源。在动基座条件下,建立了转轴陀螺常值漂移与系统经度误差之间的数学模型,根据经度误差即可估计转轴方向的陀螺常值漂移,实现系统转轴方向陀螺的常值漂移综合校正。利用计算机仿真方法验证了所给数学模型的合理性,利用建立的数学模型,只要获得一次准确的位置信息,即可对系统位置进行重调,并且实现对系统转轴方向陀螺漂移的估计与补偿,实现系统的综合校正。转轴方向陀螺漂移经过补偿后,其精度由0.002(°)/h提高到0.0005(°)/h,并给出了对系统进行综合校正的较佳时机。  相似文献   

2.
旋转式捷联惯导系统精对准方法   总被引:4,自引:0,他引:4  
针对静基座捷联惯导系统初始对准时可观测性差的缺点,提出了捷联式惯导系统四位置转停的单轴旋转方案,以及在此方案下的精对准方法。将陀螺常值漂移和加速度计零位误差调制成周期变量,通过改变惯导系统误差模型中的捷联矩阵改善系统的可观测性。为了使捷联惯导系统的误差方程适合卡尔曼滤波模型,将加速度计误差和陀螺漂移扩充为状态变量,采用卡尔曼滤波方法实现旋转式捷联惯导系统的精对准。仿真结果表明,IMU旋转状态下的对准方法大大提高了系统失准角的可观测性,从而提高了对准精度。  相似文献   

3.
分析了转位机构角速度误差和角位置误差对旋转式捷联惯导系统的影响,研究了旋转式捷联惯导系统的基本解算结构,这些对提高旋转式捷联惯导系统的精度具有十分重要的意义。详细介绍了角度调整型和角速度调制型两种旋转式捷联惯导系统的基本解算结构,给出了转位机构角速度误差和角位置误差在这两种解算结构下的误差传播特性。研究结果表明,对于角速度调制型解算结构,恒定的转位机构角速度误差等效于方位常值陀螺漂移,将对系统精度产生很大的影响,转位机构角位置误差与两个水平方向的角速度互相耦合,产生两个水平方向上的角速度误差;对于角度调制型解算机构,转位机构的角速度误差和角位置误差不引入到捷联回路,对捷联回路不产生影响,但是在IMU姿态到载体姿态变换的过程中,转位机构角位置误差引起载体航向误差,且航向误差的大小与转位机构的角位置误差相等。  相似文献   

4.
为了提高惯导系统长时间导航精度,需要在导航阶段对系统进行综校。设计了一种基于方位旋转调制技术的平台式惯导系统一点校方案。方位旋转调制技术可以有效地调制水平惯性敏感元件误差,降低其对系统工作精度的不利影响,这为"一点校"方案的实施提供了前提。分析了方位旋转式平台惯导系统的误差模型,得到了系统误差与误差源之间的解析关系。通过分析研究系统的误差传播特性,建立了方位陀螺漂移与系统位置误差的数学模型,完成了方位旋转式平台惯导系统的"一点校"方案设计,通过系统试验验证其有效性,方位陀螺常值漂移为0.003(°)/h的条件下,经10 h一点校,40 h一点校后,72 h定位误差小于1nmile,航向误差小于1′。  相似文献   

5.
单轴/双轴旋转调制航海惯导备份配置满足了舰艇对于定位精度、可靠性、成本的综合要求,但系统间缺少信息融合。针对此问题,以单轴旋转惯导的姿态误差、速度误差、位置误差与双轴旋转惯导对应误差的差值以及两套惯导的陀螺常值漂移、水平加速度计常值零偏为系统状态,并以二者间扣除杆臂效应后的速度及位置的差值为观测量,通过联合旋转调制,改变两套系统IMU的相对姿态关系。分段常值可观测性分析表明,所有系统状态完全可观。建立了定位误差预测方程,对单轴旋转惯导方位陀螺漂移造成的定位误差进行预测补偿。实验结果表明,对单轴旋转惯导方位陀螺漂移造成的定位误差预测补偿后,其定位误差减小了30%,不仅满足了高可靠性的要求,而且提高了故障情况下的导航精度。  相似文献   

6.
捷联惯性导航系统的旋转调制技术是一种自校正方法,它能将惯性测量单元中陀螺仪的常值漂移和加速度计的零偏调制成周期性的信号,通过积分运算消除这些周期信号对系统的影响。从而使得惯导系统在不使用外部信息的条件下,自动补偿由陀螺漂移和加速度计零偏引起的导航误差,提高系统精度。从单轴旋转调制原理入手,详细推导分析了IMU绕任意转轴做单轴旋转时,陀螺和加速度计常值漂移、安装误差、刻度系数误差在单轴旋转下的误差表现形式,基于最大限度消除陀螺和加速度计常值漂移的原则,给出了最优的转轴选取方案。进行了大量仿真和实验,证明了提出的旋转方案的有效性。  相似文献   

7.
—本文应用天文导航理论,根据GPS提供的位置信息,对静电陀螺捷联导航系统陀螺常值漂移和载体航向角进行校正的算法进行了研究。这一校正方案计算简单,具有实用价值。由仿真结果可以看出,它能较精确地估计陀螺常值漂移和航向角误差,为系统误差的校正提供了可信信息。  相似文献   

8.
旋转式惯导系统的标度因数误差效应分析   总被引:6,自引:1,他引:5  
旋转式惯导系统的标度因数误差效应理论分析关系系统的设计和精度的提高。从旋转式惯导系统的误差传播方程出发,推导了光学陀螺旋转式惯导系统中由于标度因数误差引起的数学平台角度误差表达式,并以此为基础,分析了非对称性标度因数误差的自动补偿效应、地球自转与对称性标度因数误差的耦合效应、转轴方向上的标度因数误差效应等现象,最后得到了要减小或者消除这些误差效应所应该注意的原则和结论。分析表明,合适的双轴转动方案能够补偿全部三个陀螺的非对称性标度因数误差;采用三轴或者三轴以上的转轴,能消除对称性标度因数误差与地球自转耦合引起的导航误差;为防止对称性标度因数误差和转位运动耦合而引起的大的导航误差,应采用正反转相结合方案。  相似文献   

9.
本文研究了以减震器为中介的惯导平台的振动诱导漂移。此种漂移常值分量的大小是相当可观的,航向效应漂移比常值分量要小得多。对陀螺电机采用不同频率的电源供电,可消除此种漂移。  相似文献   

10.
激光陀螺捷联惯性导航系统的误差参数标定   总被引:3,自引:0,他引:3  
惯性器件标定一般都必须对北和调平,以消除地速及重力加速度的影响,但是不适合在靶场及其它野战环境下。根据激光捷联惯导系统的误差方程,在激光捷联惯性组合不水平指北情况下,通过12位置的标定方法,抵消地速及重力加速度的影响,从而得出加速度计的误差参数和激光陀螺的常值漂移;然后通过单轴转台,标定出陀螺的安装误差和标度因数;最后分别在引北调平和在不水平指北的12位置下对激光捷联组合进行标定,并对实验精度进行对比,两者误差比较小,认为此方法可以满足激光陀螺捷联系统的标定要求。本方案利用最少的测试位置,得到了所有需要的信息,利用率高。  相似文献   

11.
旋转-静止混合对准方案在旋转火箭弹中的应用   总被引:1,自引:0,他引:1  
由于成本考虑,旋转火箭弹捷联惯导系统中使用中低精度陀螺,利用传统的初始对准方法,对准精度难以满足要求。针对旋转火箭弹的特点,提出了一种旋转调制的非线性对准方法,利用该方法,Y轴和Z轴陀螺的随机漂移得到调制,从而提高了对准精度。针对单纯旋转调制对准无法精确估计陀螺漂移的缺点,提出了一种旋转—静态混合对准方案,利用旋转调制的对准结果,在静止段对陀螺漂移进行精确估计。仿真结果表明,由两个精度为0.2(°)/h和一个精度为0.01(°)/h的陀螺组成的捷联惯导系统,在230 s内对准误差小于0.05°,同时可准确估计出三个陀螺的漂移。该方案具有一定的工程实用价值。  相似文献   

12.
对单轴旋转惯导系统因旋转而引入的各项误差进行分析,研究其误差特性及补偿方法。针对单轴正反连续旋转方案,在假定惯性测试组件的器件误差和其他非旋转性的误差在精确标定的情况下,推导了因旋转轴安装不正交引起的涡动、轴系间隙引起的晃动、测角器件误差、旋转控制引起的换向超调误差、角位置、角速度不准确等因素而引起的误差的表现形式,定性和定量地分析了各误差对于系统精度的影响。针对对系统影响显著的旋转轴不正交误差,提出了一种基于系统自身旋转轴正反旋转的误差标定及补偿方法并进行了仿真实验。在给定条件下的仿真结果表明,该方法能够准确标定出旋转轴的不正交误差,标定精度达到角秒级。  相似文献   

13.
针对低成本IMU的系统误差难以现场快速标定问题,提出了一种无需任何外部设备辅助的多位置旋转现场标定方法。该方法通过比力加速度与重力建立加速度计的误差模型,基于动态旋转以及标定后的加速度建立导航方程实现陀螺仪误差建模,使用改进的LM算法,实现低成本IMU误差参数的快速标定。实验结果表明:该方法可以有效地标定出加速度计和陀螺仪的安装误差、缩放因子和零偏误差,极大地简化了标定的过程,标定补偿后的IMU原始数据质量大幅提高,在100 s的静态导航试验中,x、y、z的定位精度分别从2541.547m、895.191m、7267.507m提升至80.229m、41.430m、99.832m。  相似文献   

14.
在导航过程中惯性平台绕方位轴旋转能够有效地调制陀螺的常值漂移,但加速度计安装坐标系和陀螺安装坐标系的不重合会导致加速度计零偏也被调制为一个变化量,因此需要建立其旋转误差模型进行补偿。针对平台惯导台体绕方位轴旋转时加速度计误差补偿的实际需要,建立加速度计由初始安装误差角引起的旋转误差模型。模型主要针对旋转过程中由初始安装误差角导致的加速度计和水平面之间的不重合度,模型包括角度叠加模型和单位矢量旋转模型。通过对两种模型仿真分析,表明角度叠加模型计算量小,并且能够满足实际误差补偿需要。  相似文献   

15.
对于由单自由度液浮陀螺仪构成的平台式惯性导航系统,H调制陀螺监控技术可以同时对三个导航陀螺分别进行监控和漂移自补偿,它采用北向和方位H调制陀螺监控方案,在惯性平台台体上加装北向和方位监控陀螺,对北向和方位导航陀螺进行监控,实现误差自补偿。监控陀螺采取力反馈工作方式,其输入轴与相应导航陀螺的输入轴同向平行。通过改变监控陀螺电机的转速,使其周期性工作在不同的动量矩H值上,并保证不同H值之间监控陀螺调制漂移的稳定性。根据不同H值下的监控陀螺输出,即可解算出相应导航陀螺的漂移并随时加以补偿。经过室内试验、码头系泊试验和海上航行试验的考核,结果表明,H调制陀螺监控高精度惯性导航系统其定位误差最大值≤1.50 nmile/72 h,CEP≤0.90 nmile/72 h,系统重调周期可以延长至3~5昼夜。  相似文献   

16.
惯性导航系统的误差估计   总被引:8,自引:1,他引:8  
惯性导航系统(INS)以其自主的工作能力广泛应用于军事武备的导航、制导与控制系统和国民经济的诸多领域。它的主要缺点是定位误差随其工作时间的增长而增大。对惯导系统的误差进行估计和补偿是在保证性能价格比的前提下,提高惯性导航系统精度的有效途径。目前,对惯导系统的误差修正均采用外信息(如GPS的输出信息)校正,即在INS工作的全部时间内,定期地利用GPS输出的速度和位置信息与INS输出的相应信息的差值作为观测量,对INS误差进行估计和补偿。Kalman滤波的方法广泛地应用于惯导系统的误差修正初始对准。本研究了当地水平惯导系统的误差估计和补偿问题。分析结果表明,采用Kalman滤波的方法,可以精确地估计惯导系统的误差(包括陀螺漂移和加速度计零偏),误差估计的精度高,并且估计的方差阵收敛快。  相似文献   

17.
为尽可能消除IMU安装误差和陀螺漂移对系统精度的影响,运用主从惯导传递对准技术,采用扩展状态滤波器和速度/姿态角组合匹配的方法,估计出IMU安装误差和陀螺漂移误差,并对系统进行补偿。仿真结果表明,补偿了安装误差和陀螺漂移后,捷联惯性系统的导航参数精度可提高1个数量级以上。  相似文献   

18.
不同轴向的惯性器件误差在惯导系统中的误差传播特性不同,因此在旋转惯导系统中转动机构选择不同转轴方向对系统精度的调制效果不同。分析了在选择不同轴向作为旋转轴时对导航系统精度的影响,并根据转台转轴与机体系、惯性器件(IMU)系之间存在的夹角关系,将其分为两种方案进行讨论,转轴与IMU系存在夹角以及转轴与机体系存在夹角。通过分析,前者在调制效果上与传统的单轴旋转惯导系统相同,而后者会改变调制效果。在此基础上,进一步推导分析了第二种方案下不同转轴方向与系统定位精度之间的内在关系,提出了一种在长时间导航情况下的转轴方向选择方案,并进行了仿真验证。仿真结果表明,与传统单轴旋转惯导系统相比,该方案显著提高了系统的导航定位精度,对在不同情况下转台转轴方向的选择具有一定的工程应用参考价值。  相似文献   

19.
In this paper, a quasi-steady three degree-of-freedom (3-dof) flow-induced galloping instability model for bluff-bodies is proposed. The proposed model can be applied generally for the prediction of onset of galloping instability due to negative aerodynamic damping of any prismatic compact bluff body in a fluidic medium. The three degrees of freedom refer to the bluff body's two orthogonal displacements perpendicular to its length axis and the rotation about its length axis. The model incorporates inertial coupling between the three degrees of freedom and is capable of estimating the onset of galloping instability due changes in drag, lift and moment, assuming that the bluff body is subject to uniform flow and motion. The changes may be a function of wind angle of attack (α) perpendicular to bluff body's length axis, Reynolds number and a skew wind angle (?) in relation to the length axis of the bluff body. An analytical solution of the instability criterion is obtained by applying the Routh-Hurwitz criterion.  相似文献   

20.
The time courses of wing and body kinematics of two free-flying drone-flies, as they performed saccades, were measured using 3D high-speed video, and the morpho- logical parameters of the wings and body of the insects were also measured. The measured wing kinematics was used in a Navier-Stokes solver to compute the aerodynamic forces and moments acting on the insects. The main results are as following. (1) The turn is mainly a 90° change of heading. It is made in about 10 wingbeats (about 55 ms). It is of interest to note that the number of wingbeats taken to make the turn is approximately the same as and the turning time is only a little different from that of fruitflies measured recently by the same approach, even if the weight of the droneflies is more than 100 times larger than that of the fruitflies. The long axis of body is about 40° from the horizontal during the maneuver. (2) Although the body rotation is mainly about a vertical axis, a relatively large moment around the yaw axis (axis perpendicular to the long axis of body), called as yaw moment, is mainly needed for the turn, because moment of inertial of the body about the yaw axis is much larger than that about the long axis. (3) The yaw moment is mainly pro- duced by changes in wing angles of attack: in a right turn, for example, the dronefly lets its right wing to have a rather large angle of attack in the downstroke (generally larger than 50°) and a small one in the upstroke to start the turn, and lets its left wing to do so to stop the turn, unlike the fruitflies who generate the yaw moment mainly by changes in the stroke plane and stroke amplitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号