首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on a valence bond projector Monte Carlo simulation of the cubic lattice quantum Heisenberg model with additional higher-order exchange interactions in each unit cell. The model supports two different valence bond solid (VBS) ground states. In one of these states, the dimer pattern is a three-dimensional analogue of the columnar pattern familiar from two dimensions. In the other, the dimers are regularly arranged along the four main diagonals in 1/8 of the unit cells. The phases are separated from one another and from a Néel phase by strongly first-order boundaries. Our results strengthen the case for exotic transitions in two dimensions, where no discontinuities have been detected at the Heisenberg Néel-VBS transition driven by four-spin plaquette interactions.  相似文献   

2.
We study the quantum dimer model on the triangular lattice, which is expected to describe the singlet dynamics of frustrated Heisenberg models in phases where valence bond configurations dominate their physics. We find, in contrast to the square lattice, that there is a truly short ranged resonating valence bond phase with no gapless excitations and with deconfined, gapped, spinons for a finite range of parameters. We also establish the presence of crystalline dimer phases.  相似文献   

3.
We report on the controlled creation of a valence bond state of delocalized effective-spin singlet and triplet dimers by means of a bichromatic optical superlattice. We demonstrate a coherent coupling between the singlet and triplet states and show how the superlattice can be employed to measure the singlet-fraction employing a spin-blockade effect. Our method provides a reliable way to detect and control nearest-neighbor spin correlations in many-body systems of ultracold atoms. Being able to measure these correlations is an important ingredient in studying quantum magnetism in optical lattices. We furthermore employ a SWAP operation between atoms which are part of different triplets, thus effectively increasing their bond-length. Such a SWAP operation provides an important step towards the massively parallel creation of a multiparticle entangled state in the lattice.  相似文献   

4.
We propose a critical spin liquid ground state for S=1/2 antiferromagnets on the square lattice. In a renormalization group analysis of the "staggered flux" algebraic spin liquid, we examine perturbations, present in the antiferromagnet, which break its global SU(4) symmetry to SO(5). At physical parameter values, we find an instability towards a fixed point with SO(5) symmetry. We discuss the possibility that this fixed point describes a transition between the Néel and valence bond solid states, and the relationship to the SO(5) nonlinear sigma model of Tanaka and Hu.  相似文献   

5.
Using the Bogoliubov inequality, we extend previously known results concerning the absence of continuous symmetry breakdown for equilibrium states of certain quantum and classical lattice, and continuum systems in two space dimensions.Partially supported by the N.S.F. under grant MCS 7801433.Partially supported by the N.S.F. under grant MCS 7906633.  相似文献   

6.
(121/123)Sb nuclear quadrupole resonance and muon spin relaxation experiments of Mo_3Sb_7 revealed symmetry breakdown to a nonmagnetic state below the transition recently found at T_S approximately 50 K. The transition is characterized by a distinct lattice dynamics suggested from narrowing of nuclear fields. We point out that the Mo sublattice is a unique three-dimensional frustrated lattice where nearest-neighbor and next-nearest-neighbor antiferromagnetic interactions compete, and propose that tetragonal distortion to release the frustration stabilizes long-range order of spin-singlet dimers, i.e., valence bond crystal, which is thermally excited to the dynamic state with cubic symmetry.  相似文献   

7.
We construct a local interacting quantum dimer model on the square lattice, whose zero-temperature phase diagram is characterized by a line of critical points separating two ordered phases of the valence bond crystal type. On one side, the line of critical points terminates in a quantum transition inherited from a Kosterlitz-Thouless transition in an associated classical model. We also discuss the effect of a longer-range dimer interaction that can be used to suppress the line of critical points by gradually shrinking it to a single point. Finally, we propose a way to generalize the quantum Hamiltonian to a dilute dimer model in presence of monomers and we qualitatively discuss the phase diagram.  相似文献   

8.
The present paper is a naïve operational approach to measurement theory in a truly relativistic framework. Both experiments and states exist in finite regions of space-time. The causality structure of the underlying Minkowski space is described in terms of these.A Mellon Postdoctoral Fellow partially supported by the U.S. Atomic Energy Commission under contract number AT-30-1-3829.An N.S.F. Postdoctoral Fellow supported by N.S.F. development grant GU 2056.  相似文献   

9.
The electronic structures and optical properties of N-doped, S-doped and N/S co-doped SrTiO3 have been investigated on the basis of density functional theory (DFT) calculations. Through band structure calculation, the top of the valence band is made up of the O 2p states for the pure SrTiO3. When N and S atoms were introduced into SrTiO3 lattice at O site, the electronic structure analysis shows that the doping of N and S atoms could substantially lower the band gap of SrTiO3 by the presence of an impurity state of N 2p on the upper edge of the valence band and S 2p states hybrid with O 2p states, respectively. When the N/S co-doped, the energy gap has further narrowing compared with only N or S doped SrTiO3. The calculations of optical properties also indicate a high photo response for visible light for N/S co-doped SrTiO3. Besides, we find a new impurity state which separates from the O 2p states could improve the photocatalytic efficiency and we also propose a model for light electron-hole transportation which can explain the experiment results well. All these conclusions are in agreement with the recent experimental results.  相似文献   

10.
The EtMe(3)P and EtMe(3)Sb triangular organic salts are distinguished from other Pd[(dmit)(2)] based salts, as they display valence bond and no long-range order, respectively. Under pressure, a superconducting phase is revealed in EtMe(3)P near the boundary of valence bond order. We use slave-rotor theory with an enlarged unit cell to study competition between uniform and broken translational symmetry states, offering a theoretical framework capturing the superconducting, valence bond order, spin liquid, and metallic phases on an isotropic triangular lattice. Our finite temperature phase diagram manifests a remarkable resemblance to the phase diagram of the EtMe(3)P salt, where the reentrant transition of insulator-metal-insulator type can be explained by an entropy difference between the metal and U(1) spin liquid. We predict different temperature dependence of the specific heat between the spin liquid and metal.  相似文献   

11.
We study Gaussian valence bond states of continuous variable systems obtained as the outputs of projection operations from an ancillary space of M infinitely entangled bonds connecting neighboring sites applied at each ofN sites of a harmonic chain. The entanglement distribution in Gaussian valence bond states can be controlled by varying the input amount of entanglement engineered in a (2M+ 1)-mode Gaussian state known as the building block, which is isomorphic to the projector applied at a given site. We show how this mechanism can be interpreted in terms of multiple entanglement swapping from the chain of ancillary bonds, through the building blocks. We provide optical schemes to produce bisymmetric three-mode Gaussian building blocks (which correspond to a single bond, M = 1), and study the entanglement structure in the output Gaussian valence bond states. Finally, the usefulness of such states for quantum communication protocols with continuous variables, like telecloning and teleportation networks, is discussed. The text was submitted by the authors in English.  相似文献   

12.
The optical, electrical, and chemical properties of semiconductor surfaces are largely determined by their electronic states close to the Fermi level (E{F}). We use scanning tunneling microscopy and density functional theory to clarify the fundamental nature of the ground state Ge(001) electronic structure near E{F}, and resolve previously contradictory photoemission and tunneling spectroscopy data. The highest energy occupied surface states were found to be exclusively back bond states, in contrast to the Si(001) surface, where dangling bond states also lie at the top of the valence band.  相似文献   

13.
We study controlled generation and measurement of superfluid d-wave resonating valence bond (RVB) states of fermionic atoms in 2D optical lattices. Starting from loading spatial and spin patterns of atoms in optical superlattices as pure quantum states from a Fermi gas, we adiabatically transform this state to an RVB state by a change of the lattice parameters. Results of exact time-dependent numerical studies for ladders systems are presented, suggesting generation of RVB states on a time scale smaller than typical experimental decoherence times.  相似文献   

14.
In this Letter we study various spin correlated insulating states of F=2 cold atoms in optical lattices. We find that the effective spin exchange interaction due to virtual hopping contains an octopole coupling between two neighboring lattice sites. Depending on scattering lengths and numbers of particles per site the ground states are either rotationally invariant dimer or trimer Mott insulators or insulating states with various spin orders. Three spin-ordered insulating phases are ferromagnetic, cyclic, and nematic Mott insulators. We estimate the phase boundaries for states with different numbers of atoms per lattice site.  相似文献   

15.
Yan Chen  Jinwu Ye 《哲学杂志》2013,93(35):4484-4491
A duality transformation in quantum field theory is usually established first through partition functions. It is always important to explore the dual relations between various correlation functions in the transformation. Here, we explore such a dual relation to study quantum phases and phase transitions in an extended boson Hubbard model at 1/3 (2/3) filling on a triangular lattice. We develop systematically a simple and effective way to use the vortex degrees of freedom on dual lattices to characterize both the density wave and valence bond symmetry breaking patterns of the boson insulating states in the direct lattices. In addition to a checkerboard charge density wave (X-CDW) and a stripe CDW, we find a novel CDW-VBS phase which has both local CDW and local valence bond solid (VBS) orders. Implications for Quantum Monte Carlo simulations are addressed. The possible experimental realizations of cold atoms loaded on optical lattices are discussed.  相似文献   

16.
Qian Zhao 《中国物理 B》2022,31(4):46101-046101
We have grown a YCrO$_3$ single crystal by the floating-zone method and studied its temperature-dependent crystalline structure and magnetization by x-ray powder diffraction and PPMS DynaCool measurements. All diffraction patterns were well indexed by an orthorhombic structure with space group of $Pbnm$ (No. 62). From 36 K to 300 K, no structural phase transition occurs in the pulverized YCrO$_3$ single crystal. The antiferromagnetic phase transition temperature was determined as $T_\textrm{N} = 141.58(5)$ K by the magnetization versus temperature measurements. We found weak ferromagnetic behavior in the magnetic hysteresis loops below $T_\textrm{N}$. Especially, we demonstrated that the antiferromagnetism and weak ferromagnetism appear simultaneously upon cooling. The lattice parameters ($a$, $b$, $c$, and $V$) deviate downward from the Grüneisen law, displaying an anisotropic magnetostriction effect. We extracted temperature variation of the local distortion parameter $\varDelta$. Compared to the $\varDelta$ value of Cr ions, Y, O1, and O2 ions show one order of magnitude larger $\varDelta$ values indicative of much stronger local lattice distortions. Moreover, the calculated bond valence states of Y and O2 ions have obvious subduction charges.  相似文献   

17.
基于第一性原理的平面波超软赝势法对KDP(KH2PO4)和尿素(CH4N2O)晶体的能带结构、电子态密度、电荷差分密度以及布局分析进行了计算讨论.结果表明:尿素晶体中的C1-O1、C1-N1、N1-H2和N1-H1键都具有共价键特性,带隙值为4.636 eV,价带顶主要由H-1s与N、O的2p态贡献,导带底主要是H-1s与C、N、O的2p态贡献;KDP晶体的H1-O1键具有离子性而P1-O1则具有共价性,带隙宽度为5.713 eV,价带顶主要由O-2p以及P-3p贡献,导带底主要由H-1s、P-3s和3p以及K-4s和3p态贡献.  相似文献   

18.
S掺杂对锐钛矿相TiO2电子结构与光催化性能的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
赵宗彦  柳清菊  朱忠其  张瑾 《物理学报》2008,57(6):3760-3768
采用基于第一性原理的平面波超软赝势方法研究了掺杂不同价态S的锐钛矿相TiO2的晶体结构、杂质形成能、电子结构及光学性质.计算结果表明硫在掺杂体系中的存在形态与实验中的制备条件有关;掺杂后晶格发生畸变、原子间的键长及原子的电荷量也发生了变化,导致晶体中的八面体偶极矩增大; S 3p态与O 2p态、Ti 3d态杂化而使导带位置下移、价带位置上移及价带宽化,从而导致TiO2的禁带宽度变窄、光吸收曲线红移到可见光区.这些结果很好地解释了S掺杂锐钛矿相TiO2在可见光下具有优良的光催化性能的内在原因.根据计算结果分析比较了硫以不同离子价态掺杂对锐钛矿相TiO2电子结构和光催化性能影响的差别. 关键词: 2')" href="#">锐钛矿相TiO2 S掺杂 第一性原理 光催化性能  相似文献   

19.
We consider a spacially inhomogeneous generalization of the valence bond solid (VBS) chain by permitting an arbitrary distribution of the numbers of valence bonds. We evaluate all two point correlation functions of these VBS states. The correlation functions turn out to factorize completely into a product of local factors. This leads to very simple rules for their evaluation and implies the breaking of correlations of higher rank by a single weak link.Research performed within the program of the Sonderforschungsbereich 341 supported by the Deutsche Forschungsgemeinschaft  相似文献   

20.
The Gibbs states of binary lattice systems can be characterized by their stability with respect to certain microscopic transitions which have a simple physical interpretation. A detailed analysis is provided for the case of a one-dimensional lattice gas with nearest-neighbor interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号