首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper introduces an algorithm which transforms homogeneous algebraic differential equations into universal differential equations (in the sense of L. A. Rubel) havingC n (ℝ)-solutions. By applications of the algorithm to different initial equations some new universal differential equations are found, and all the known equations due to R. J. Duffin are rediscovered with this method. Assuming weak conditions one can find Cn(ℝ)-solutionsy of the differential equation close to any continuous function such that 1, with 0 ≤k 1 <k 2 < .... <k s n are linearly independent over the field of real algebraic numbers at the rational points q1,...,qs.  相似文献   

2.
In previous work we have shown that the binomial coefficients Cn··kr, r are strongly logarithmically concave for 0?r?[n/(k+1)] and hence have at most a double maximum. Let rn, k be the least integer at which this maximum occurs. Properties of {rn, k}n, k are best derived by introducing the polynomial family Qk(x,y) defined by Qk(x,y) = ∏k+1j=1 [1?(k+1)x+jy]?xkj=1[1?kx+jy]. It is shown that for each k there is a unique function ηk(y) defined on [0, 1/(k+1)] which is analytic in a neighbourhood of zero and which satisfies Qk(ηk(y), y)=0. Setting ηk(0)=δk, η1k(0)=αk we prove that rrn,k = [k] o[k]+1 and further, that the number of times that rm,k = [k]+1 for k+1? m ? n is asymptotically k. Several other properties of αk are derived, including 0<αk <1/2.  相似文献   

3.
We consider the symmetric schemes in Boundary Value Methods (BVMs) applied to delay differential equations y(t)=ay(t)+by(t-τ) with real coefficients a and b. If the numerical solution tends to zero whenever the exact solution does, the symmetric scheme with (k1+m,k2)-boundary conditions is called τk1,k2(0)-stable. Three families of symmetric schemes, namely the Extended Trapezoidal Rules of first (ETRs) and second (ETR2s) kind, and the Top Order Methods (TOMs), are considered in this paper.By using the boundary locus technology, the delay-dependent stability region of the symmetric schemes are analyzed and their boundaries are found. Then by using a necessary and sufficient condition, the considered symmetric schemes are proved to be τν,ν-1(0)-stable.  相似文献   

4.
In this paper, we are concerned with the oscillation of third order nonlinear delay differential equations of the form
(r2(t)(r1(t)y))+p(t)y+q(t)f(y(g(t)))=0.  相似文献   

5.
We consider Hill's equation y″+(λq)y=0 where qL1[0,π]. We show that if ln—the length of the n-th instability interval—is of order O(n−(k+2)) then the real Fourier coefficients ank,bnk of q(k)k-th derivative of q—are of order O(n−2), which implies that q(k) is absolutely continuous almost everywhere for k=0,1,2,….  相似文献   

6.
The oscillatory nature of two equations (r(t) y′(t))′ + p1(t)y(t) = f(t), (r(t) y′(t))′ + p2(t) y(t ? τ(t))= 0, is compared when positive functions p1 and p2 are not “too close” or “too far apart.” Then the main theorem states that if h(t) is eventually negative and a twice continuously differentiable function which satisfies (r(t) h′(t))′ + p1(t) h(t) ? 0, then this inequality is necessary and sufficient for every bounded solution of (r(t) y′(t))′ + p2(t) y(t ? τ(t)) = 0 to be nonoscillatory.  相似文献   

7.
In this paper, we determine the growth of real-valued solutions of certain second-order algebraic differential equations. Our main result, together with a result of G. Valiron, shows that if y0 is an entire function which has only real, nonnegative coefficients in its power series around the origin, and which is a solution of a quadratic second-order algebraic differential equation, then y0 satisfies a growth estimate of the form,y0(x) ? exp(exp xc), where c is a constant, for all sufficiently large x. The determination of the growth of such solutions was an open problem since the Valiron-Wiman theory fails to provide any information on growth, if the equation possesses a solution of infinite order of growth.  相似文献   

8.
In this paper we will establish some oscillation criteria for the second-order nonlinear neutral delay dynamic equation
(r(t)((y(t)+p(t)y(tτ)Δ)γ)Δ)+f(t,y(tδ))=0  相似文献   

9.
For the problem given by uτ=(ξrumuξ)ξ/ξr+f(u) for 0<ξ<a, 0<τ<Λ, u(ξ,0)=u0(ξ) for 0≤ξa, and u(0,τ)=0=u(a,τ) for 0<τ<Λ, where a and m are positive constants, r is a constant less than 1, f(u) is a positive function such that limucf(u)= for some positive constant c, and u0(ξ) is a given function satisfying u0(0)=0=u0(a), this paper studies quenching of the solution u.  相似文献   

10.
Quantization of compressed sensing measurements is typically justified by the robust recovery results of Candès, Romberg and Tao, and of Donoho. These results guarantee that if a uniform quantizer of step size δ is used to quantize m measurements y=Φx of a k-sparse signal x∈? N , where Φ satisfies the restricted isometry property, then the approximate recovery x # via ? 1-minimization is within O(δ) of x. The simplest and commonly assumed approach is to quantize each measurement independently. In this paper, we show that if instead an rth-order ΣΔ (Sigma–Delta) quantization scheme with the same output alphabet is used to quantize y, then there is an alternative recovery method via Sobolev dual frames which guarantees a reduced approximation error that is of the order δ(k/m)(r?1/2)α for any 0<α<1, if m? r,α k(logN)1/(1?α). The result holds with high probability on the initial draw of the measurement matrix Φ from the Gaussian distribution, and uniformly for all k-sparse signals x whose magnitudes are suitably bounded away from zero on their support.  相似文献   

11.
Accuracy of several multidimensional refinable distributions   总被引:3,自引:0,他引:3  
Compactly supported distributions f1,..., fr on ℝd are fefinable if each fi is a finite linear combination of the rescaled and translated distributions fj(Ax−k), where the translates k are taken along a lattice Γ ⊂ ∝d and A is a dilation matrix that expansively maps Γ into itself. Refinable distributions satisfy a refinement equation f(x)=Σk∈Λ ck f(Ax−k), where Λ is a finite subset of Γ, the ck are r×r matrices, and f=(f1,...,fr)T. The accuracy of f is the highest degree p such that all multivariate polynomials q with degree(q)<p are exactly reproduced from linear combinations of translates of f1,...,fr along the lattice Γ. We determine the accuracy p from the matrices ck. Moreover, we determine explicitly the coefficients yα,i(k) such that xαi=1 r Σk∈Γyα,i(k) fi(x+k). These coefficients are multivariate polynomials yα,i(x) of degree |α| evaluated at lattice points k∈Γ.  相似文献   

12.
In this paper, we propose a new high accuracy numerical method of O(k2 + k2h2 + h4) based on off-step discretization for the solution of 3-space dimensional non-linear wave equation of the form utt = A(x,y,z,t)uxx + B(x,y,z,t)uyy + C(x,y,z,t)uzz + g(x,y,z,t,u,ux,uy,uz,ut), 0 < x,y,z < 1,t > 0 subject to given appropriate initial and Dirichlet boundary conditions, where k > 0 and h > 0 are mesh sizes in time and space directions respectively. We use only seven evaluations of the function g as compared to nine evaluations of the same function discussed in  and . We describe the derivation procedure in details of the algorithm. The proposed numerical algorithm is directly applicable to wave equation in polar coordinates and we do not require any fictitious points to discretize the differential equation. The proposed method when applied to a telegraphic equation is also shown to be unconditionally stable. Comparative numerical results are provided to justify the usefulness of the proposed method.  相似文献   

13.
This self-contained note could find classroom use in a course on differential equations. It is proved that if y1(x) and y2(x) are C 2 -functions whose Wronskian is never zero for α < x < β, then y1 and y2 form a fundamental solution set for a uniquely determined second-order linear homogeneous ordinary differential equation, y″ + p(x)y′ + q(x)y = 0, whose coefficients, p(x) and q(x), are continuous on (α, β).  相似文献   

14.
In this paper, we study the behavior of solutions of second order delay differential equation
y(t)=p1y(t)+p2y(tτ)+q1y(t)+q2y(tτ),  相似文献   

15.
We consider the equation y m u xx u yy b 2 y m u = 0 in the rectangular area {(x, y) | 0 < x < 1, 0 < y < T}, where m < 0, b ≥ 0, T > 0 are given real numbers. For this equation we study problems with initial conditions u(x, 0) = τ(x), u y (x, 0) = ν(x), 0 ≤ x ≤ 1, and nonlocal boundary conditions u(0, y) = u(1, y), u x (0, y) = 0 or u x (0, y) = u x (1, y), u(1, y) = 0 with 0≤yT. Using the method of spectral analysis, we prove the uniqueness and existence theorems for solutions to these problems  相似文献   

16.
In this paper, the authors study the existence of periodic solutions to a p-Laplacian Rayleigh differential equation with a delay as follows:
(φp(y(t)))+f(y(t))+g(y(tτ(t)))=e(t),  相似文献   

17.
We look for conditions under which all solutions of the nonlinear ordinary differential equation y(n) + f(t, y) = 0, t ? 0, ?∞ < y < ∞, are oscillatory, as well as consider the asymptotic behaviour of the nonoscillatory solutions.  相似文献   

18.
Given the one-dimensional heat equation vt = vxx on the controlled domain Q(y) = {(t, x); 0 < x < y(t), 0 < t < T} subject to some initial-boundary conditions, we study the problem of optimally selecting y(·) from some admissible class so as to maximize a given payoff of fixed duration. Q(y) is thus a controlled domain. We also study the problem in which the heat equation holds in Q(y, z) = {z(t) < x < y(t), 0 < t < T}; z minimizing, y maximizing, i.e., the differential game. The principle techniques involved are (i) transforming the controlled domain to an uncontrolled domain and then (ii) using the method of lines for parabolic equations to enable us to use known results for control systems governed by ordinary differential equations. Sufficient conditions for existence in an admissible class is given and the method of lines allows numerical techniques to be applied to determine the optimal control in our class.  相似文献   

19.
LetP=x n +P n?1(y)x n?1+…+P 0(y),Q=x m +Q m?2(y)x m?2+…+Q 0(y) belong toK[x, y], whereK is a field of characteristic zero. The main result of this paper is the following: Assume thatP x Q y ?P y Q x =1. Then:*
  1. K[Q m?2(y), …,Q 0(y)]=K[y],
  2. K[P, Q]=K[x, y] ifQ=x m +Q k (y)x k +Q r (y)x r
  相似文献   

20.
Erd?s and Selfridge [3] proved that a product of consecutive integers can never be a perfect power. That is, the equation x(x?+?1)(x?+?2)...(x?+?(m???1))?=?y n has no solutions in positive integers x,m,n where m, n?>?1 and y?∈?Q. We consider the equation $$ (x-a_1)(x-a_2) \ldots (x-a_k) + r = y^n $$ where 0?≤?a 1?<?a 2?<???<?a k are integers and, with r?∈?Q, n?≥?3 and we prove a finiteness theorem for the number of solutions x in Z, y in Q. Following that, we show that, more interestingly, for every nonzero integer n?>?2 and for any nonzero integer r which is not a perfect n-th power for which the equation admits solutions, k is bounded by an effective bound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号