首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We characterize the spaces X for which the space Cp(X) of real valued continuous functions with the topology of pointwise convergence has local properties related to the preservation of countable tightness or the Fréchet property in products. In particular, we use the methods developed to construct an uncountable subset W of the real line such that the product of Cp(W) with any strongly Fréchet space is Fréchet. The example resolves an open question.  相似文献   

2.
For every Tychonoff space X we denote by Cp(X) the set of all continuous real-valued functions on X with the pointwise convergence topology, i.e., the topology of subspace of RX. A set P is a frame for the space Cp(X) if Cp(X)⊂PRX. We prove that if Cp(X) embeds in a σ-compact space of countable tightness then X is countable. This shows that it is natural to study when Cp(X) has a frame of countable tightness with some compactness-like property. We prove, among other things, that if X is compact and the space Cp(X) has a Lindelöf frame of countable tightness then t(X)?ω. We give some generalizations of this result for the case of frames as well as for embeddings of Cp(X) in arbitrary spaces.  相似文献   

3.
Given a space M, a family of sets A of a space X is ordered by M if A={AK:K is a compact subset of M} and KL implies AKAL. We study the class M of spaces which have compact covers ordered by a second countable space. We prove that a space Cp(X) belongs to M if and only if it is a Lindelöf Σ-space. Under MA(ω1), if X is compact and (X×X)\Δ has a compact cover ordered by a Polish space then X is metrizable; here Δ={(x,x):xX} is the diagonal of the space X. Besides, if X is a compact space of countable tightness and X2\Δ belongs to M then X is metrizable in ZFC.We also consider the class M? of spaces X which have a compact cover F ordered by a second countable space with the additional property that, for every compact set PX there exists FF with PF. It is a ZFC result that if X is a compact space and (X×X)\Δ belongs to M? then X is metrizable. We also establish that, under CH, if X is compact and Cp(X) belongs to M? then X is countable.  相似文献   

4.
Let Cp(X) be the space of all continuous real-valued functions on a space X, with the topology of pointwise convergence. In this paper we show that Cp(X) is not domain representable unless X is discrete for a class of spaces that includes all pseudo-radial spaces and all generalized ordered spaces. This is a first step toward our conjecture that if X is completely regular, then Cp(X) is domain representable if and only if X is discrete. In addition, we show that if X is completely regular and pseudonormal, then in the function space Cp(X), Oxtoby's pseudocompleteness, strong Choquet completeness, and weak Choquet completeness are all equivalent to the statement “every countable subset of X is closed”.  相似文献   

5.
Let Γ denote an uncountable set. We consider the questions if a Banach space X of the form C(K) of a given class (1) has a complemented copy of c0(Γ) or (2) for every c0(Γ)⊆X has a complemented c0(E) for an uncountable EΓ or (3) has a decomposition X=AB where both A and B are nonseparable. The results concern a superclass of the class of nonmetrizable Eberlein compacts, namely Ks such that C(K) is Lindelöf in the weak topology and we restrict our attention to Ks scattered of countable height. We show that the answers to all these questions for these C(K)s depend on additional combinatorial axioms which are independent of ZFC ± CH. If we assume the P-ideal dichotomy, for every c0(Γ)⊆C(K) there is a complemented c0(E) for an uncountable EΓ, which yields the positive answer to the remaining questions. If we assume ♣, then we construct a nonseparable weakly Lindelöf C(K) for K of height ω+1 where every operator is of the form cI+S for cR and S with separable range and conclude from this that there are no decompositions as above which yields the negative answer to all the above questions. Since, in the case of a scattered compact K, the weak topology on C(K) and the pointwise convergence topology coincide on bounded sets, and so the Lindelöf properties of these two topologies are equivalent, many results concern also the space Cp(K).  相似文献   

6.
Valdivia invented a nondistinguished Fréchet space whose weak bidual is quasi-Suslin but not K-analytic. We prove that Grothendieck/Köthe's original nondistinguished Fréchet space serves the same purpose. Indeed, a Fréchet space is distinguished if and only if its strong dual has countable tightness, a corollary to the fact that a (DF)-space is quasibarrelled if and only if its tightness is countable. This answers a Cascales/K?kol/Saxon question and leads to a rich supply of (DF)-spaces whose weak duals are quasi-Suslin but not K-analytic, including the spaces Cc(κ) for κ a cardinal of uncountable cofinality. Our level of generality rises above (DF)- or even dual metric spaces to Cascales/Orihuela's class G. The small cardinals b and d invite a novel analysis of the Grothendieck/Köthe example, and are useful throughout.  相似文献   

7.
Let X be a Banach space. We say that X satisfies the fixed point property (weak fixed point property) if every non-expansive mapping defined from a convex closed bounded (convex weakly compact) subset of X into itself has a fixed point. We say that X satisfies the stable fixed point property (stable weak fixed point property) if the same is true for every equivalent norm which is close enough to the original one. Denote by P(X) the set formed by all equivalent norms with the topology of the uniform convergence on the unit ball of X. We prove that the subset of P(X) formed by the norms failing the fixed point property is dense in P(X) when X is a non-distortable space which fails the fixed point property. In particular, no renorming of ?1 can satisfy the stable fixed point property. Furthermore, we show some examples of distortable spaces failing the weak fixed point property, which can be renormed to satisfy the stable weak fixed point property. As a consequence we prove that every separable Banach space can be renormed to satisfy the stable weak fixed point property.  相似文献   

8.
We consider the question: when is a dense subset of a space XC-embedded in X? We introduce the notion of o-tightness and prove that if each finite subproduct of a product X = Πα?AXα has a countable o-tightness and Y is a subset of X such that πB(Y) = Πα?BXα for every countable B ? A, then Y is C-embedded in X. This result generalizes some of Noble and Ulmer's results on C-embedding.  相似文献   

9.
A Banach spaceX is aP λ-space if wheneverX is isometrically embedded in another Banach spaceY there is a projection ofY ontoX with norm at most λ.C(T) denotes the Banach space of continuous real-valued functions on the compact Hausdorff spaceT. T satisfies the countable chain condition (CCC) if every family of disjoint non-empty open sets inT is countable.T is extremally disconnected if the closure of every open set inT is open. The main result is that ifT satisfies the CCC andC(T) is aP λ-space, thenT is the union of an open dense extremally disconnected subset and a complementary closed setT Asuch thatC(TA) is aP λ?1-space.  相似文献   

10.
We show that metrizability and bounded tightness are actually equivalent for a large class of locally convex spaces including (LF)-spaces, (DF)-spaces, the space of distributions D′(Ω), etc. A consequence of this fact is that for the bounded tightness for the weak topology of X is equivalent to the following one: X is linearly homeomorphic to a subspace of . This nicely supplements very recent results of Cascales and Raja. Moreover, we show that a metric space X is separable if the space Cp(X) has bounded tightness.  相似文献   

11.
A space X is called C-closed if every countably compact subset of X is closed in X. We study the properties of C-closed spaces. Among other results, it is shown that countably compact C-closed spaces have countable tightness and under Martin's Axiom or 2ω0<2ω1, C-closed is equivalent to sequential for compact Hausdorff spaces. Furthermore, every hereditarily quasi-k Hausdorff space is Fréchet-Urysohn, which generalizes a theorem of Arhangel'sk in [4]. Also every hereditarily q-space is hereditarily of pointwise countable type and contains an open dense first countable subspace.  相似文献   

12.
A Hilbert bundle (p, B, X) is a type of fibre space p:BX such that each fibre p?1(x) is a Hilbert space. However, p?1(x) may vary in dimension as x varies in X. We generalize the classical homotopy classification theory of vector bundles to a “homotopy” classification of certain Hilbert bundles. An (m, n)-bundle over the pair (X, A) is a Hilbert bundle (p, B, X) such that the dimension of p?1(x) is m for x in A and n otherwise. The main result here is that if A is a compact set lying in the “edge” of the metric space X (e.g. if X is a topological manifold and A is a compact subset of the boundary of X), then the problem of classifying (m, n)-bundles over (X, A) reduces to a problem in the classical theory of vector bundles. In particular, we show there is a one-to-one correspondence between the members of the orbit set, [A, Gm(Cn)]/[X, U(n)] ¦ A, and the isomorphism classes of (m, n)-bundles over (X, A) which are trivial over X, A.  相似文献   

13.
A space is called a μ-space if it can be embedded in a countable product of paracompact Fσ-metrizable spaces. The following are shown:(1) For a Tychonoff space X, if Cp(X,R) is a μ-space, then X is a countable union of compact metrizable subspaces.(2) For a zero-dimensional space X, Cp(X,2) is a μ-space if and only if X is a countable union of compact metrizable subspaces.In particular, let P be the space of irrational numbers. Then Cp(P,2) is a cosmic space (i.e., a space with a countable network) which is not a μ-space.  相似文献   

14.
We study conditions on Banach spaces close to separability. We say that a topological space is pcc if every point-finite family of open subsets of the space is countable. For a Banach space E, we say that E is weakly pcc if E, equipped with the weak topology, is pcc, and we also consider a weaker property: we say that E is half-pcc if every point-finite family consisting of half-spaces of E is countable. We show that E is half-pcc if, and only if, every bounded linear map Ec0(ω1) has separable range. We exhibit a variety of mild conditions which imply separability of a half-pcc Banach space. For a Banach space C(K), we also consider the pcc-property of the topology of pointwise convergence, and we note that the space Cp(K) may be pcc even when C(K) fails to be weakly pcc. We note that this does not happen when K is scattered, and we provide the following example:
-
There exists a non-metrizable scattered compact Hausdorff space K with C(K) weakly pcc.
  相似文献   

15.
Let G be a topological group with the identity element e. Given a space X, we denote by Cp(X,G) the group of all continuous functions from X to G endowed with the topology of pointwise convergence, and we say that X is: (a) G-regular if, for each closed set FX and every point xX?F, there exist fCp(X,G) and gG?{e} such that f(x)=g and f(F)⊆{e}; (b) G?-regular provided that there exists gG?{e} such that, for each closed set FX and every point xX?F, one can find fCp(X,G) with f(x)=g and f(F)⊆{e}. Spaces X and Y are G-equivalent provided that the topological groups Cp(X,G) and Cp(Y,G) are topologically isomorphic.We investigate which topological properties are preserved by G-equivalence, with a special emphasis being placed on characterizing topological properties of X in terms of those of Cp(X,G). Since R-equivalence coincides with l-equivalence, this line of research “includes” major topics of the classical Cp-theory of Arhangel'ski? as a particular case (when G=R).We introduce a new class of TAP groups that contains all groups having no small subgroups (NSS groups). We prove that: (i) for a given NSS group G, a G-regular space X is pseudocompact if and only if Cp(X,G) is TAP, and (ii) for a metrizable NSS group G, a G?-regular space X is compact if and only if Cp(X,G) is a TAP group of countable tightness. In particular, a Tychonoff space X is pseudocompact (compact) if and only if Cp(X,R) is a TAP group (of countable tightness). Demonstrating the limits of the result in (i), we give an example of a precompact TAP group G and a G-regular countably compact space X such that Cp(X,G) is not TAP.We show that Tychonoff spaces X and Y are T-equivalent if and only if their free precompact Abelian groups are topologically isomorphic, where T stays for the quotient group R/Z. As a corollary, we obtain that T-equivalence implies G-equivalence for every Abelian precompact group G. We establish that T-equivalence preserves the following topological properties: compactness, pseudocompactness, σ-compactness, the property of being a Lindelöf Σ-space, the property of being a compact metrizable space, the (finite) number of connected components, connectedness, total disconnectedness. An example of R-equivalent (that is, l-equivalent) spaces that are not T-equivalent is constructed.  相似文献   

16.
All spaces are assumed to be Tychonoff. A space X is called projectively P (where P is a topological property) if every continuous second countable image of X is P. Characterizations of projectively Menger spaces X in terms of continuous mappings , of Menger base property with respect to separable pseudometrics and a selection principle restricted to countable covers by cozero sets are given. If all finite powers of X are projectively Menger, then all countable subspaces of Cp(X) have countable fan tightness. The class of projectively Menger spaces contains all Menger spaces as well as all σ-pseudocompact spaces, and all spaces of cardinality less than d. Projective versions of Hurewicz, Rothberger and other selection principles satisfy properties similar to the properties of projectively Menger spaces, as well as some specific properties. Thus, X is projectively Hurewicz iff Cp(X) has the Monotonic Sequence Selection Property in the sense of Scheepers; βX is Rothberger iff X is pseudocompact and projectively Rothberger. Embeddability of the countable fan space Vω into Cp(X) or Cp(X,2) is characterized in terms of projective properties of X.  相似文献   

17.
We continue the study of Selectively Separable (SS) and, a game-theoretic strengthening, strategically selectively separable spaces (SS+) (see Barman, Dow (2011) [1]). The motivation for studying SS+ is that it is a property possessed by all separable subsets of Cp(X) for each σ-compact space X. We prove that the winning strategy for countable SS+ spaces can be chosen to be Markov. We introduce the notion of being compactlike for a collection of open sets in a topological space and with the help of this notion we prove that there are two countable SS+ spaces such that the union fails to be SS+, which contrasts the known result about SS spaces. We also prove that the product of two countable SS+ spaces is again countable SS+. One of the main results in this paper is that the proper forcing axiom, PFA, implies that the product of two countable Fréchet spaces is SS, a statement that was shown in Barman, Dow (2011) [1] to consistently fail. An auxiliary result is that it is consistent with the negation of CH that all separable Fréchet spaces have π-weight at most ω1.  相似文献   

18.
Let X be a space, and let A be a zero-dimensional topological ring. In this paper we will consider a few natural questions that arise when studying the space C p (X, A), the ring of continuous functions from X to A, endowed with the topology of pointwise convergence. It will be shown that the zero-dimensionality of the codomain plays a vital role in this study. An upper and lower bound will be determined for the density of C p (X, A) using the density of A and the weight of X. The character of C p (X, A) will be computed, thus characterizing when C p (X, A) is metrizable. Lastly, we will consider the topological dual space of C p (X, A) and use it to prove a Nagata-like theorem.  相似文献   

19.
We identify continuous real-valued functions on a Tychonoff space X with their (closed) graphs thus allowing for C(X) to naturally inherit the lower Vietoris topology from the ambient hyperspace. We then calculate a bitopological version of tightness using the weak Lindelöf numbers of finite powers of X. We also characterize bitopological versions of countable fan and strong fan tightness of the point-open topology with respect to the lower Vietoris topology on C(X) in terms of suitable covering properties of the powers X n formulated using the language of S 1 and S fin selection principles.  相似文献   

20.
A Hilbert bundle (p, B, X) is a type of fibre space p: BX such that each fibre p?1(x) is a Hilbert space. However, p?1(x) may vary in dimension as x varies in X, even when X is connected. We give two “homotopy” type classification theorems for Hilbert bundles having primarily finite dimensional fibres. An (m, n)-bundle over the pair (X, A) is a Hilbert bundle over (p, B, X) such that the dimension of p?1(x) is m for x in A and n otherwise. As a special case, we show that if X is a compact metric space, C+X the upper cone of the suspension SX, then the isomorphism classes of (m, n)-bundles over (SX, C+X) are in one-to-one correspondence with the members of [X, Vm(Cn)] where Vm(Cn) is the Stiefel manifold. The results are all applicable to the classification of separable, continuous trace C1-algebras, with specific results given to illustrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号