首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Bulk-reacting porous materials are often used as absorptive lining in packed silencers to reduce broadband noise. Modelling the entire silencer domain with a bulk-reacting material will inevitably involve two different acoustic media, air and the bulk-reacting material. A so-called direct mixed-body boundary element method (BEM) has recently been developed to model the two-medium problem in a single-domain fashion. The present paper is an extension of the direct mixed-body BEM to include protective cloth and embedded rigid surfaces. Protective cloth, an absorptive material itself with a higher flow resistivity than the primary lining material, is usually sandwiched between a perforated metal surface and the lining to protect the lining material from any abrasive effect of the grazing flow. Two different approaches are taken to model the protective cloth. One is to approximate sound pressure as a linear function across the cloth thickness and then use the bulk-reacting material properties of the cloth to obtain the transfer impedance. The other is to measure the transfer impedance of the cloth directly by an experimental set-up similar to the two-cavity method. As for an embedded thin surface, it is a rigid thin surface sandwiched between two bulk-reacting linings. Numerical modelling of an embedded thin surface is similar to the modelling of a rigid thin surface in air. Several test cases are given and the BEM results for transmission loss (TL) are verified by experimental TL measurements.  相似文献   

2.
A plate silencer consists of an expansion chamber with two side-branch rigid cavities covered by plates. Previous studies showed that, in a duct, the introduction of simply supported or clamped plates into an air conveying system could achieve broadband quieting from low to medium frequencies. In this study, analytical formulation is extended to the plate silencer with general boundary conditions. A set of static beam functions, which are a combination of sine series and third-order polynomial, is employed as the trial functions of the plate vibration velocity. Green?s function and Kirchhoff–Helmholtz integral are used to solve the sound radiation in the duct and the cavity, and then the vibration velocity of the plate is obtained. Having obtained the vibration velocity, the pressure perturbations induced by the plate oscillation and the transmission loss are found. Optimization is carried out in order to obtain the widest stopband. The transmission loss calculated by the analytical method agrees closely with the result of the finite element method simulation. Further studies with regard to the plate under several different classical boundary conditions based on the validated model show that a clamped-free plate silencer has the worst stopband. Attempts to release the boundary restriction of the plate are also made to study its effect on sound reflection. Results show that a softer end for a clamped–clamped plate silencer helps increase the optimal bandwidth, while the same treatment for simply supported plate silencer will result in performance degradation.  相似文献   

3.
多孔扩散型消声器外壳对其性能影响的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
多孔扩散型消声器由于其体积小、消声性能高而广泛应用到排气噪声的降低上,其外壳对消声器的消声性能具有重要作用。本文对此类消声器外壳的孔型、孔径和孔距以及外壳同消声材料的配合方面进行了细致的实验研究,特别对外壳与消声材料的配合与其排放噪声以及外部流场之间的关系进行了探讨,得到了一些有用的结论,对消声器性能的提高具有一定指导意义。  相似文献   

4.
To eliminate the limitations of the conventional sound field separation methods which are only applicable to regular surfaces, a sound field separation method based on combined integral equations is proposed to separate sound fields directly in the spatial domain. In virtue of the Helmholtz integral equations for the incident and scattering fields outside a sound scatterer, combined integral equations are derived for sound field separation, which build the quantitative relationship between the sound fields on two arbitrary separation surfaces enclosing the sound scatterer. Through boundary element discretization of the two surfaces, corresponding systems of linear equations are obtained for practical application. Numerical simulations are performed for sound field separation on different shaped surfaces. The influences induced by the aspect ratio of the separation surfaces and the signal noise in the measurement data are also investigated. The separated incident and scattering sound fields agree well with the original corresponding fields described by analytical expressions, which validates the effectiveness and accuracy of the combined integral equations based separation method.  相似文献   

5.
This paper deals with the computational simulation of both scalar wave and vector wave propagation problems in infinite domains. Due to its advantages in simulating complicated geometry and complex material properties, the finite element method is used to simulate the near field of a wave propagation problem involving an infinite domain. To avoid wave reflection and refraction at the common boundary between the near field and the far field of an infinite domain, we have to use some special treatments to this boundary. For a wave radiation problem, a wave absorbing boundary can be applied to the common boundary between the near field and the far field of an infinite domain, while for a wave scattering problem, the dynamic infinite element can be used to propagate the incident wave from the near field to the far field of the infinite domain. For the sake of illustrating how these two different approaches are used to simulate the effect of the far field, a mathematical expression for a wave absorbing boundary of high-order accuracy is derived from a two-dimensional scalar wave radiation problem in an infinite domain, while the detailed mathematical formulation of the dynamic infinite element is derived from a two-dimensional vector wave scattering problem in an infinite domain. Finally, the coupled method of finite elements and dynamic infinite elements is used to investigate the effects of topographical conditions on the free field motion along the surface of a canyon.  相似文献   

6.
针对气流通道彼此独立且截面尺寸较小的直管式阻性消声器,Belov基于声波导管理论推导了其消声量计算公式,但该公式不适用于气流通道彼此连通且截面尺寸较大的阵列式阻性消声器。为此,提出了一种阵列式消声器消声量计算方法。将阵列式消声器划分为周期性排列的消声单元,每个消声单元包含1个吸声柱。分别参照扩张式消声器和直管阻性消声器计算消声单元的抗性部分(进出口气流通道截面突变处)和阻性部分消声量的理论值TL1和TL2。在此基础上,采用有限元法仿真得到消声器消声量仿真值TLs,基于阻性部分消声量仿真值和理论值的比值(TLs-TL1)/TL2,拟合确定各倍频带阻性消声量修正函数Nf,即修正后的消声量理论值计算模型为TL′t=TL1+TL2·Nf。作为算例,建立了多孔吸声材料流阻率为11425 Pa·s/m2时适用于不同结构尺寸的阵列式消声器消声量计算模型。实测结果...  相似文献   

7.
To clarify the applicability of locally reacting boundary conditions in wave-based numerical analyses of sound fields in rooms, we numerically analyzed a non-diffuse sound field in a room with unevenly distributed sound absorbing surfaces and investigated the differences between the extended and local reactions. Each absorbing surface was a porous material layer backed by a rigid wall. Simulations were performed by the fast multipole boundary element method, a highly efficient boundary element method using the fast multipole method. At low frequencies, the extended and local reactions yielded similar reverberation decay curves because of the influence of the room. However, when the random incidence absorption coefficients were small at low frequencies or frequencies were high, the difference was greater than expected from the corresponding Eyring decay lines. We conclude at high frequencies, the locally reacting boundary conditions lead to a longer reverberation time than that expected from the absorption coefficient differences between the extended and local reactions. These differences were similar in sound-pressure-level and sound-intensity-level distributions, and in the oblique incidence absorption coefficient of the absorbing surfaces, but were increased at low frequencies.  相似文献   

8.
A general formulation for analysis of sound field in a uniform flow duct lined with bulk-reacting sound-absorbing material is presented here. Presented theoretical model predicts the rate of attenuation for symmetric as well as asymmetric modes in rectangular duct lined with loosely bound (bulk-reacting) sound-absorbing material, which allows acoustic propagation through the lining. The nature of attenuation in rectangular ducts lined on two and four sides with and without mean flow is discussed. Computed results are compared with published theoretical and experimental results. The presented model can be used as guidelines for the acoustic design of silencers, air-conditioning ducts, industrial fans, and other similar applications.  相似文献   

9.
Sound attenuation characteristics of a resonant-type dissipative silencer consisting of a reactive chamber with a porous facing have been considered. Such a silencer provides a high degree of attenuation within a narrow frequency range. Predicted attenuation values are compared with experiment for plane waves propagating in a rigid duct containing the dissipative silencer. The sound field is described by one-dimensional acoustical expressions taking into account the effect of boundary conditions and the presence of the silencer. The theoretical model incorporates the acoustical properties of porous materials and inertance of the sound field in the duct adjacent to the silencer. Good agreement was achieved between theoretical predictions and actual measurements. Results presented indicate the dependence of the attenuation spectrum upon flow resistivity and thickness of the porous material.  相似文献   

10.
A three-dimensional finite element method has been implemented to predict the transmission loss of a packed muffler and a parallel baffle silencer for a given frequency range. Iso-parametric quadratic tetrahedral elements have been chosen due to their flexibility and accuracy in modeling geometries with curved surfaces. For accurate physical representation, perforated plates are modeled with complex acoustic impedance while absorption linings are modeled as a bulk media with a complex speed of sound and mean density. Domain decomposition and parallel processing techniques are applied to address the high computational and memory requirements. The comparison of the computationally predicted and the experimentally measured transmission loss shows a good agreement.  相似文献   

11.
In the present study, a hybrid method is proposed for predicting the acoustic performance of a silencer for a nonlinear wave. This method is developed by combining two models: (i) a frequency-domain model for the computation of sound attenuation due to a silencer in a linear regime and (ii) a wavenumber space model for the prediction of the nonlinear time-evolution of finite amplitudes of the acoustic wave in a uniform duct of the same length as the silencer. The present method is proposed under the observation that the physical process of the nonlinear sound attenuation phenomenon of a silencer may be decoupled into two distinct mechanisms: (a) a linear acoustic energy loss that owes to the mismatch in the acoustic impedance between reactive elements and/or the sound absorption of acoustic liners in a silencer; (b) a nonlinear acoustic energy loss that is due to the energy-cascade phenomenon that arises from the nonlinear interaction between components of different frequencies. To establish the validity of the present model for predicting the acoustic performance of silencers, two model problems are considered. First, the performance of simple expansion mufflers with nonlinear incident waves has been predicted. Second, proposed method is applied for computing nonlinear acoustic wave propagation in the NASA Langley impedance duct configuration with ceramic tubular liner (CT57). Both results obtained from the hybrid models are compared with those from computational aero-acoustic techniques in a time-space domain that utilize a high-order finite-difference method. Through these comparisons, it is shown that there are good agreements between the two predictions. The main advantage of the present method is that it can effectively compute the nonlinear acoustic performance of silencers in nonlinear regimes without time-space domain calculations that generally entail a greater computational burden.  相似文献   

12.
Acoustic impedance of an absorbing interface is easily introduced in boundary element codes provided that a local reaction is assumed. But this assumption is not valid in the case of porous road surface. A two-domain approach was developed for the prediction of sound propagation above a porous layer that takes into account the sound propagation inside the porous material. The porous material is modeled by a homogeneous dissipative fluid medium. An alternative to this time consuming two-domain approach is proposed by using the grazing incidence approximate impedance in the traditional single-domain boundary element method (BEM). It can be checked that this value is numerically consistent with the surface impedance calculated at the interface from the pressure and surface velocity solutions of the two-domain approach. The single-domain BEM introducing this grazing incidence impedance is compared in terms of sound attenuation with analytical solutions and two-domain BEM. The comparison is also performed with the single-domain BEM using the normal incidence impedance, and reveals a much better accuracy for the prediction of sound propagation above a porous interface.  相似文献   

13.
A predictive method is proposed to determine the transmission loss of reactive silencers using the three-dimensional (3-D) time-domain computational fluid dynamics (CFD) approach and the plane wave decomposition technique. Firstly, a steady flow computation is performed with a mass-flow-inlet boundary condition, which provides an initial condition for the following two unsteady flow computations. The first unsteady flow computation is conducted by imposing an impulse (acoustic excitation) superimposed on the constant mass flow at the inlet of the model and then adding the non-reflecting boundary condition (NRBC) when the impulse completely propagates into the silencer. The second unsteady flow computation is conducted for the case without acoustic excitation at the inlet. The time histories of pressure and velocity at the upstream monitoring point as well as history of pressure at the downstream monitoring point are recorded during the two transient computations. The differences between the two unsteady flow computational results are the corresponding acoustic quantities. Therefore, the incident sound pressure signal is obtained by using plane wave decomposition at upstream, while the transmitted sound pressure signal is just the sound pressure at downstream. Finally, those two sound pressure signals in the time-domain are transformed into the frequency-domain by Fast Fourier Transform (FFT) and then the transmission loss (TL) of silencer is determined. For the straight-through perforated tube silencers with and without flow, the numerical results agree well with the published measurements.  相似文献   

14.
In the past, various two- and three-dimensional Cartesian, poroelastic finite element formulations have been proposed and demonstrated. Here an axisymmetric formulation of a poroelastic finite element is presented. The intention of this work was to develop a finite element formulation that could easily and efficiently model axisymmetric sound propagation in circular structures having arbitrary, axially dependent radii, and that are lined or filled with elastic porous sound absorbing materials such as foams. The formulation starts from the Biot equations for an elastic porous material expressed explicitly in axisymmetric form. By following a standard finite element development, a u-U formulation results. Procedures for coupling the axisymmetric elements to an adjacent acoustical domain are described, as are the boundary conditions appropriate for unfaced foams. Calculations described here show that the present formulation yields predictions as accurate as a Cartesian, three-dimensional model in much reduced time. Predictions made using the present model are also compared with measurements of sound transmission through cylindrical foam plugs, and the predicted results are shown to agree well with the measurements. Good agreement was also found in the case of sound transmission through a conical foam plug.  相似文献   

15.
A compact flow-through plate silencer is constructed for low frequency noise control using new reinforced composite plates. The concept comes from the previous theoretical study [L. Huang, Journal of the Acoustical Society of America 119 (2006) 2628–2638] which concerns a clamped supported plate enclosed by rigid cavities. When the grazing incident sound wave comes and induces the plate into the vibration, it will radiate sound and reflect sound. Such sound reflection causes a desirable noise reduction from low to medium frequency with wide broadband. The structural property of the very light plate with high bending stiffness is very crucial element in such plate silencer. In this study, an approach to fabricate new reinforced composite panel with light weight and high flexibility to increase the bending stiffness is developed in order to realize the function of this plate silencer practically. The plate silencer can be constructed in more compact size compared with the previous two-plate silencer with two rectangular cavities and the performance with the stopband of the range from 229 to 618 Hz, in which the transmission loss is higher than 10 dB over the whole frequency band without flow or with flow at the speed of 15 m/s, can be achieved. The experimental data also proves that the non-uniform clamped plates with thinner ends perform very well. To implement the use of such silencer practically in controlling noise at different dominant frequency ranges, a design chart has been established for searching the optimal bending stiffness and corresponding stopband at different geometries.  相似文献   

16.
A simplified boundary element method (BEM) for dealing with high-frequency sound is proposed. The boundary integral equation is modified into a quadratic form to enable the prediction of sound levels in the one-third octave band analysis. Monopole and dipole source terms in the conventional BEM are transformed into the auto- and cross-spectra of two vibrating sources, in which the cross-spectra are eventually neglected by assuming that the correlation coefficients involved are negligible. The present method is compared with the Rayleigh integral for calculating the sound pressure radiated from a baffled panel, in terms of the application limit. The characteristic length of the boundary element and the applicable frequency range can be determined by the lower limit value of the correlation coefficient. As a test example, the field pressure radiated from a partially vibrating sphere is predicted and the resultant trend is in good agreement with the analytic solution as far as the related correlation coefficient satisfies the assumption. The overdetermination process for overcoming nonuniqueness in exterior radiation problems is unnecessary in the present method because phase information can be ignored. The results of the calculation show that the proposed method is acceptable for solving the exterior radiation problem at a high-frequency range in a timely manner.  相似文献   

17.
This paper revisits the popular Rayleigh integral approximation and also considers a second approximation, the high frequency boundary element method, which is similar to the Rayleigh integral. The Rayleigh integral approximation under consideration is enhanced so that only the elements visible to a particular point in the field are used to calculate the sound pressure at that point. It is demonstrated how both the Rayleigh integral and high frequency boundary element method are approximations to the boundary integral equation so that similarities between the two methods are recognized. Several test cases were conducted in order to assess and compare both methods. The first set of test cases was the pulsating and oscillating sphere. Both methods were then compared on more applied examples including a running engine, construction cab, and transmission housing. It was concluded that though both methods can reliably predict the sound power for some problems, the high frequency boundary element method is the more robust.  相似文献   

18.
陈明阳  于荣金 《光学学报》2002,22(4):10-412
根据色散媒质的性质及电磁波在不同媒质交界面上的反射的机理,证明并分析了在理想匹配层吸收边界中引入色散可实现有效吸收入射到吸收边界上的电磁波,从而达到减少时域有限差分法计算区域和计算误差的目的。  相似文献   

19.
徐润汶  郭立新  范天奇 《物理学报》2013,62(17):170301-170301
本文将有限元/边界积分方法(FE/BIM)结合区域分解方法引入到粗糙海面及其上方目标 的电磁散射问题的研究中. 由于积分边界可以以任意形状设置在距模型表面任意远的距离处, 故本文采用共形人工边界结合区域分解建模方法截断模型的开放计算区域以减少求解未知量, 在截断区域内部采用有限元方法求解, 而计算区域的边界条件通过边界积分方程方法得到. 通过与矩量法获得的数值计算结果进行比较, 证明了该混合算法及模型处理方法的正确性, 进而研究了海面上方弹体目标的电磁散射特性, 并讨论了其双站散射系数随电磁波入射角度、目标高度、海面风速以及弹体尺寸的电磁散射特性变化情况. 本文结果可用于反演复杂背景下的目标信息及目标探测等领域. 关键词: 电磁散射 粗糙海面 目标 有限元/边界积分方法  相似文献   

20.
According to the equation of motion in the elastic medium and integral equation of target scattering, the sound scattering from the partially water-filled elastic spherical shells with and without an inner plate is studied using the finite element and boundary element method, and the scattering normalized form functions of the shell filled with different volume of water are computed and the mechanism of resonance scattering is analyzed. The results show that the resonance of the shell with partially water-filled and without the plate is mainly related to the volume of water, and the resonance is produced by inner water and the spherical shell. The resonance characteristics of partially water-filled elastic shell with the plate are similar to that of empty structured elastic spherical shell, and the sound field in inner water is weaker which indicates the main resonance characteristics are decided by spherical shell and the plate. In addition, the scattering characteristics of spherical shell with plate and one side full water-filled are greatly different from the partially water-filled ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号