首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 703 毫秒
1.
单分子流式检测仪的研制   总被引:1,自引:0,他引:1  
采用激光诱导荧光和流体动力学聚焦技术成功地研制出单分子流式检测仪, 实现了对水溶液中单个藻红蛋白及单个DNA分子片段的检测, 检测速率可达到每秒几十次. 与单分子荧光显微术相比, 流式分析将固定的标本台改为流动的单分子悬液, 大大提高了检测速率和统计精确性, 更加适合生物样品的快速、超高灵敏分析.  相似文献   

2.
目的:构建并鉴定人白细胞介素16(IL-16)的重组腺病毒pAd-IL-16表达载体,为进一步研究IL-16功能奠定基础.方法:分离正常人外周血单个核细胞(PBMC),组胺刺激后提取总RNA,RT-PCR扩增IL-16基因,将其克隆到含有绿色荧光蛋白(GFP)标记的腺病毒穿梭质粒pAdTrack-CMV后,再与腺病毒骨架质粒pAdEasy-1共转化BJ5183细菌,获得重组腺病毒载体pAd-IL-16,转染 HEK 293T细胞包装病毒.荧光显微镜下观察细胞内绿色荧光,测定病毒效价,RT-PCR和Western blot分别分析细胞内IL-16 mRNA和蛋白质的表达.结果:经双酶切及基因鉴定,重组穿梭质粒和重组腺病毒质粒均见约400 by插人片段,测序结果和GenBank中的基因序列一致;重组病毒效价为2.8×10~8 pfu/mL;重组病毒感染后,HEK 293T细胞中IL-16mRNA和蛋白质均有表达.结论:成功构建IL-16重组腺病毒载体,并可在HEK 293T细胞中表达,为进一步研究IL-16的功能奠定了基础.  相似文献   

3.
以聚谷氨酸为骨架, 用低分子量聚乙烯亚胺胺解聚谷氨酸苄酯, 得到聚谷氨酸-g-聚乙烯亚胺, 用异佛尔酮二异氰酸酯将聚乙二醇单甲醚偶联到聚谷氨酸-g-聚乙烯亚胺上, 合成了梳状聚阳离子基因载体聚谷氨酸-g-(聚乙烯亚胺-b-聚乙二醇). 利用核磁共振氢谱、 激光粒度分析仪、 Zeta电位仪和凝胶电泳对聚阳离子载体及其与质粒脱氧核糖核酸(pDNA)形成的复合物进行了表征. 通过噻唑蓝(MTT)细胞毒性测试、 绿色荧光蛋白质粒pEGFP-C1及荧光素酶质粒pGL3体外转染实验考察了载体的细胞毒性及基因转染效率. 结果表明, 当聚乙烯亚胺中N原子和DNA中P原子的摩尔比(N/P)大于5时, 载体能很好地包裹DNA, 载体与DNA形成的复合物粒径约为130 nm, Zeta电位约为28 mV; 通过MTT实验和体外质粒转染实验显示出载体在测量范围内具有极低的细胞毒性和较高的转染效率.  相似文献   

4.
基于二氧化硅微颗粒促细胞增殖效应的基因转染新方法   总被引:1,自引:0,他引:1  
林霞  何晓晓  王柯敏  谭蔚泓 《化学学报》2007,65(14):1353-1356
报道了二氧化硅微颗粒(SiMPs)的促细胞增殖效应, 并基于该效应发展了一种以二氧化硅微颗粒为转染伴侣的基因转染新方法, 采用MTT实验证明了二氧化硅微颗粒具有促细胞增殖效应, 并以绿色荧光蛋白表达载体质粒pEGFP为报告基因, COS-7细胞为靶细胞, 在多聚-L-赖氨酸介导的基因转染中, 利用二氧化硅微颗粒的促细胞增殖效应, 加入二氧化硅微颗粒作为转染伴侣开展基因转染实验, 获得了显著增强的基因转染效率, 相比于未加入二氧化硅微颗粒为转染伴侣的基因转染方法, 该方法的转染效率提高到5倍多. 利用二氧化硅微颗粒的促细胞增殖效应, 以其作为转染伴侣的基因转染新方法不仅为相关研究提供了一种高效简便的基因转染新方法, 而且也为基因转染效率的提高提供了新的思路.  相似文献   

5.
通过紫外-可见光谱、荧光光谱和红外光谱等方法研究了药物10-羟基喜树碱(HCPT)的光谱性质.采用溴化噻唑蓝四氮唑(MTT)法测定了HCPT对3种肿瘤细胞(HeLa,MCF-7和HT1080)的抗肿瘤活性,其IC50值分别为16.37,16.73和19.24μg/mL.测定了HCPT对正常细胞人胚肾细胞系HEK293T的生长抑制活性,最高抑制率达88.72%,表明正常细胞比3种肿瘤细胞对药物HCPT更敏感.以HeLa细胞为模型,利用Annexin V-FITC细胞凋亡检测试剂盒研究了HCPT的抗肿瘤作用机制,发现几乎所有细胞均同时被Annexin V-FITC和碘化丙啶(PI)染色,细胞膜为绿色,而细胞核为红色,表明HCPT诱导了HeLa细胞的晚期凋亡.通过荧光显微镜观察了HCPT在HeLa细胞中的分布,为其在细胞标记中的应用提供了科学依据.  相似文献   

6.
<正>绿色荧光蛋白(GFP)的发明因其能够提供对于活细胞和活体动物的靶向基因修饰标记而获得2008年诺贝尔化学奖。进一步,由基因改造的光激活荧光蛋白(PA-FP)能够提供单分子特性,而实现了超分辨显微,使得这一技术获得2014年诺贝尔化学奖。随后,超分辨的发展向着活细胞动态超高时空分  相似文献   

7.
本文使用电脉冲介导的基因转移技术,研究外源基因在哺乳动物细胞中的表达,结果成功地将Px1TK质粒,PSV2Neo质粒和含有人膀胱癌基因的PUCEJ质粒分别导入MLTK~-细胞和NIH/3T3细胞。获得了MLTK~-细胞的瞬间表达和稳定转化;NIH/3T3细胞的稳定转化和恶性转化。瞬间表达率达80%,稳定转化率约10~(-4)。用分子杂交检测外源基因在转染细胞中的整合情况以及裸鼠接种检测恶性转化细胞的致瘤性,均获得了阳性结果。  相似文献   

8.
通过溶胶-凝胶法合成了在水溶液中稳定发光、荧光颜色可调的ZnO@polymer核壳型纳米粒子, 并研究了这种量子点对人类宫颈癌HeLa细胞的毒性以及细胞吞噬后激光共聚焦成像的效果. 这种荧光探针的外壳是一种通过配位键与ZnO内核结合的共聚物, 该共聚物外层是亲水的聚甲基丙烯酰胺, 内层是疏水的聚甲基丙烯酸酯. 细胞毒性实验证明, 该材料有良好的生物兼容性, 适用于生物荧光标记. 共聚焦荧光成像结果显示, 这些纳米粒子可以穿透HeLa细胞膜并在细胞质中稳定发光.  相似文献   

9.
通过琥珀酸酐将低分子量支化聚乙烯亚胺(PEI, 分子量1000)偶联到普鲁兰多糖(Pullulan)上, 合成了新型基因载体P-PEI. 利用 1H NMR、 FTIR、 粒度仪、 Zeta电位仪、 透射电镜和凝胶电泳对聚阳离子载体及其与质粒pDNA 的复合物进行了表征. 凝胶阻滞实验结果证明, 载体P-PEI在体外可以通过静电相互作用稳定结合pDNA, 并能有效抑制DNA水解酶及血清成分对pDNA的降解. 噻唑蓝(MTT)细胞毒性测试、 绿色荧光蛋白表达质粒(pGFP)及荧光素酶表达质粒(pGL3)转染实验结果表明, 载体P-PEI在N/P高达12.5时对细胞MCF-7, HeLa和COS-7的毒性低于PEI; 当N/P 为6.25时能有效将pGFP和pGL3带入Hela 细胞并表达, 最佳转染效率及荧光素酶活分别为, 比Lipo 2000[(49.13±0.61)%, (58.47±7.62)×108 RLU/mg蛋白) 略低. 因此以Pullulan为骨架材料的P-PEI是一种新的有潜在应用价值的非病毒基因载体.  相似文献   

10.
黄振龙  陈令成  肖义 《应用化学》2017,34(12):1370-1378
线粒体是一种具有双层膜结构的细胞器,参与细胞新陈代谢过程的能量循环以及离子平衡过程,在细胞生理过程中具有极其重要的意义。一些小分子荧光染料/探针结构中带有正电荷,因受到线粒体内膜负电势的牵引而标记在线粒体上,为研究线粒体的形态或功能提供了重要的可视化成像工具。然而,大多数线粒体染料/探针对线粒体的靶向标记稳定性仍不够理想,因为线粒体电势处于不断的动态变化中,当电势降低时,对染料的亲和力相应降低。尤其在病理条件下(比如细胞凋亡)细胞代谢受到阻滞时,线粒体膜电势显著降低,阳离子染料将扩散离开线粒体,造成非特异性荧光。最近,Kim团队和本人课题组提出可固定线粒体探针的新概念,用活性基团将荧光分子探针通过共价键固定在线粒体中,开发了稳定靶向线粒体中的定量探测微环境p H值、粘度、膜电势荧光探针。我们认为,对于追踪和探测具有高度动态变化特性的线粒体而言,开发可固定的线粒体荧光分子探针是必然趋势,因此本文进行评述和展望。  相似文献   

11.
We report a novel NO donor (RpNO), containing a 2,6-dimethylnitrobenzene moiety for photocontrollable NO release and a rhodamine moiety for targeting to mitochondria. Photorelease of NO from RpNO in aqueous solution was confirmed by means of ESR analysis. Cellular release of NO from RpNO was confirmed with the aid of DAF-FM DA, an NO-specific fluorescence probe. RpNO was colocalized with MitoTracker Green FM, a mitochondrial stain, in HCT116 colon cancer cells and exhibited photodependent cytotoxicity. Our results indicate that RpNO is an effective NO donor for time-controlled, mitochondria-specific NO treatment.  相似文献   

12.
We report noninvasive autofluorescence mitochondrial imaging in cultured human corneal endothelial cells (HCECs). HCECs harvested from eye bank corneas were cultured in thin glass-bottom plates. Mitochondria were imaged with an autofluorescence microscope using a DAPI filter set (excitation: G365, emission: band pass 445/50) and then, after fixation with 4% paraformaldehyde, cells were stained with MitoTracker Green FM (MTG). Both images were aligned using a linear conformal algorithm for image mapping based on manually selected corresponding feature points, and then mathematically compared using two-dimensional spatial image correlation coefficients. Autofluorescence imaging provided highly resolved mitochondrial signals from living HCECs, comparable to those taken with MTG. Both techniques yielded very similar images at high magnification and high resolution, demonstrating the tubular morphology and cytoplasmic distribution that are characteristic of mitochondria. Image registration using a linear conformal mapping technique and cross-correlations showed high correlation of overlapping autofluorescence and MTG images. This study validates the novel use of autofluorescence vital imaging as a noninvasive, inexpensive and functional alternative to the mitochondria-specific dyes in cultured HCEC. This noninvasive mitochondrial imaging technique can be useful in future applications studying mitochondrial biology of ocular cells.  相似文献   

13.
Fuller KM  Duffy CF  Arriaga EA 《Electrophoresis》2002,23(11):1571-1576
We report the application of capillary electrophoresis (CE) with postcolumn laser-induced fluorescence (LIF) detection to measure the cardiolipin content of individual mitochondria from cultured NS1 cells. Mitochondria were isolated by differential centrifugation and stained with the fluorescent dye 10-N-nonyl acridine orange which stoichiometrically binds to cardiolipin in a 1:1 or 2:1 ratio depending on the dye concentration. The green fluorescence resulting from the 1:1 complex was chosen for analysis because it is substantially more intense than the red fluorescence resulting from the 2:1 complex. Two dye concentrations that resulted in maximal and submaximal formation of the 1:1 10-N-nonyl acridine orange-cardiolipin complex were identified by spectrofluorometry. Individual mitochondria stained with both dye concentrations were separated and detected by CE with LIF detection. The data from mitochondria dosed with the lower dye concentration, where it is assumed that all the dye added to the mitochondrial sample was bound to cardiolipin, were used to derive a sensitivity factor relating fluorescence intensity of a mitochondrial event to its cardiolipin content. Using this factor, the cardiolipin contents of individual mitochondria stained with the higher dye concentration were determined, and ranged from 1.2 to 920 amol, with a median value of 4 amol. These results suggest a new strategy for estimating the organellar content of compounds that can be fluorescently tagged.  相似文献   

14.
Labeling of proteins with fluorescent dyes offers powerful means for monitoring protein interactions in vitro and in live cells. Only a few techniques for noncovalent fluorescence labeling with well-defined localization of the attached dye are currently available. Here, we present an efficient method for site-specific and stable noncovalent fluorescence labeling of histidine-tagged proteins. Different fluorophores were conjugated to a chemical recognition unit bearing three NTA moieties (tris-NTA). In contrast to the transient binding of conventional mono-NTA, the multivalent interaction of tris-NTA conjugated fluorophores with oligohistidine-tagged proteins resulted in complex lifetimes of more than an hour. The high selectivity of tris-NTA toward cumulated histidines enabled selective labeling of proteins in cell lysates and on the surface of live cells. Fluorescence labeling by tris-NTA conjugates was applied for the analysis of a ternary protein complex in solution and on surfaces. Formation of the complex and its stoichiometry was studied by analytical size exclusion chromatography and fluorescence quenching. The individual interactions were dissected on solid supports by using simultaneous mass-sensitive and multicolor fluorescence detection. Using these techniques, formation of a 1:1:1 stoichiometry by independent interactions of the receptor subunits with the ligand was shown. The incorporation of transition metal ions into the labeled proteins upon labeling with tris-NTA fluorophore conjugates provided an additional sensitive spectroscopic reporter for detecting and monitoring protein-protein interactions in real time. A broad application of these fluorescence conjugates for protein interaction analysis can be envisaged.  相似文献   

15.
Regulation of intracellular potassium (K+) concentration plays a key role in metabolic processes. So far, only a few intracellular K+ sensors have been developed. The highly selective fluorescent K+ sensor KS6 for monitoring K+ ion dynamics in mitochondria was produced by coupling triphenylphosphonium, borondipyrromethene (BODIPY), and triazacryptand (TAC). KS6 shows a good response to K+ in the range 30–500 mM , a large dynamic range (Fmax/F0≈130), high brightness (?f=14.4 % at 150 mM of K+), and insensitivity to both pH in the range 5.5–9.0 and other metal ions under physiological conditions. Colocalization tests of KS6 with MitoTracker Green confirmed its predominant localization in the mitochondria of HeLa and U87MG cells. K+ efflux/influx in the mitochondria was observed upon stimulation with ionophores, nigericin, or ionomycin. KS6 is thus a highly selective semiquantitative K+ sensor suitable for the study of mitochondrial potassium flux in live cells.  相似文献   

16.
A series of new rationale designed 2,1,3‐benzothiadiazole (BTD) fluorescent derivatives has been synthesized and applied for cellular selective staining of cancer cells in cell‐imaging experiments. Four new synthesized BTD derivatives showed only poor or reasonable cellular selection, but with excellent fluorescence intensity and almost no background signal emitting at the blue or green channels. The knowledge gained by analysing their molecular architecture, however, allowed the planning and synthesis of a fluorescent BTD, which was then successfully tested and showed superior mitochondrial selection with outstanding results in bioimaging experiments in living cells. The new marker (named Splendor) was then compared with the commercially available MitoTracker Red (also through co‐staining experiments) and showed far better mitochondrial selection, fluorescence intensity and chemical stability. Mitochondrial imaging and tracking (dynamic changes) was possible using Splendor during the whole cellular division cycle. DFT calculations were performed to offer insights into the origin of the chemical‐ and photostability of BTD derivatives. In addition, molecular docking calculations hint at a potential molecular target for the BTD derivatives in the mitochondrial protein adenine nucleotide translocase, which may explain the mitochondrial selectivity of Splendor versus the other four BTD derivatives.  相似文献   

17.
An inverted microscope was combined with a compact dye laser with a pulse width of <190 ps and an intensified charge-coupled device (ICCD) camera with a minimum gate width of 200 ps. The resulting fluorescence lifetime imaging microscope, which has a temporal resolution of 340 ps, was used to measure the fluorescence lifetime of polymer microspherers. The results indicated a fluorescence lifetime of 0.9 ns. The present analytical instrument was also employed in an evaluation of biological cells after labeling them with SYTO 13, a fluorescent dye.  相似文献   

18.
Protein labeling with fluorogenic probes is a powerful method for the imaging of cellular proteins. The labeling time and fluorescence contrast of the fluorogenic probes are critical factors for the precise spatiotemporal imaging of protein dynamics in living cells. To address these issues, we took mutational and chemical approaches to increase the labeling kinetics and fluorescence intensity of fluorogenic PYP‐tag probes. Because of charge‐reversal mutations in PYP‐tag and probe redesign, the labeling reaction was accelerated by a factor of 18 in vitro, and intracellular proteins were detected with an incubation period of only 1 min. The brightness of the probe both in vitro and in living cells was enhanced by the mutant tag. Furthermore, we applied this system to the imaging analysis of bromodomains. The labeled mutant tag successfully detected the localization of bromodomains to acetylhistone and the disruption of the bromodomain–acetylhistone interaction by a bromodomain inhibitor.  相似文献   

19.
Mitochondria are responsible for maintaining a variety of cellular functions. One such function is the interaction and subsequent import of proteins into these organelles via the translocase of outer membrane (TOM) complex. Antibodies have been used to analyze the presence and function of proteins comprising this complex, but have not been used to investigate variations in the abundance of TOM complex in mitochondria. Here, we report on the feasibility of using capillary cytometry with laser-induced fluorescence to detect mitochondria labeled with antibodies targeting the TOM complex and to estimate the number of antibodies that bind to these organelles. Mitochondria were fluorescently labeled with DsRed2, while antibodies targeting the TOM22 protein, one of nine proteins comprising the TOM complex, were conjugated to the Atto-488 fluorophore. At typical labeling conditions, 94 % of DsRed2 mitochondria were also immunofluorescently labeled with Atto-488 Anti-TOM22 antibodies. The calculated median number of Atto-488 Anti-TOM22 antibodies bound to the surface of mitochondria was ~2,000 per mitochondrion. The combination of fluorescent immunolabeling and capillary cytometry could be further developed to include multicolor labeling experiments, which enable monitoring several molecular targets at the same time in the same or different organelle types.
Figure
?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号