首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The Driven-Equilibrium Carr–Purcell Meiboom–Gill (DECPMG) pulse sequence is a rapid method for obtaining the average ratio of longitudinal to transverse relaxation times T1/T2 as a function of T2. Since this is a one-dimensional experiment, the T1/T2T2 ratio can be acquired, potentially, in just two scans; the second scan being a reference CPMG measurement. Conventionally, T1/T2 is determined from a two-dimensional T1-T2 relaxation correlation experiment. The method described here offers a significant reduction in experimental time without a reduction in signal-to-noise. The T1/T2 ratio is useful for comparing the behaviour of liquids in porous media. Here we demonstrate the application of the DECPMG sequence to the study of oil-bearing rocks by differentiating oil or water saturated rock cores, and by observing the relative strengths of surface interaction for water in two types of rock by measuring T1/T2 as a function of magnetic field strength.  相似文献   

2.
This work presents a study on the relation between the fiber texture and the magnetostrictive performance in an antiferromagnetic Mn50Fe50 alloy wire, which was prepared through the combining process of hot rolling and cold drawing. The face-centered cubic (fcc) crystal structure can be retained during the plastic deformation process. Mixed fiber textures consisting of both 1 1 0 and 1 0 0 components were formed along the drawing direction (DD) in the wire. A large magnetostriction of 750 ppm was obtained along DD under 1.2 T, which can be ascribed to the single γ phase and the formation of preferred crystal orientation.  相似文献   

3.
The far-field properties and beam quality of vectorial nonparaxial Hermite–Laguerre–Gaussian (HLG) beams are studied in detail, where, instead of the second-order-moments-based M2 factor, the extended power in the bucket (PIB) and βparameter are used to characterize the beam quality in the far field and the intensity in the formulae is replaced by the z component of the time-averaged Poynting vector Sz. It is found that the Sz PIB and βparameter of vectorial nonparaxial HLG beams depend on the mode indices n, m, αparameter and waist-width-to-wavelength ratio w0/λ and the PIB and βparameter are additionally dependent on the bucket's size taken.  相似文献   

4.
Scanning tunneling microscopy/spectroscopy (STM/STS) measurements on multi-layered cuprate superconductor Ba2Ca5Cu6O12 (O1−x Fx)2 are carried out. STM topographies show randomly distributed bright spot structures with a typical spot size of 0.8 nm. These bright spots are occupied about 28% per one unit cell of c-plane, which is comparable to the regular amount of apical oxygen of 20% obtained from element analysis. Tunneling spectra simultaneously show both the small and the large gap structures. These gap sizes at 4.9 K are about Δ 15 meV and 90 meV, respectively. The small gap structure disappears at the temperature close to TC, while the large gap persists up to 200 K. Therefore, these features correspond to the superconducting gap and pseudogap, respectively. These facts give evidence for some ordered state with large energy scale even in the superconducting state. For the superconducting gap, the ratio of 2Δ/KBTC = 4.9 is obtained with TC = 70 K, which is determined from temperature dependence of the tunneling spectra.  相似文献   

5.
Conditional source-term estimation (CSE) is a method to close the mean chemical reaction source-term in an averaged transport equation. It is used with a trajectory generated low-dimensional manifold (TGLDM) to simulate a turbulent non-premixed flame. Integral equations are inverted for two progress variables, YCO2|ξ and YH2O|ξ, by assuming spatial homogeneity in the conditional averages. Using these two progress variables, the conditional source terms of temperature and other scalars are interpolated from the TGLDM table and mapped back into the physical space to be substituted into the transport equations. Solving a transport equation using a source-term interpolated from the TGLDM is found to improve the prediction of NO over simply interpolating the mass fraction of NO directly from the TGLDM. This method has been applied in a large eddy simulation (LES) of a turbulent non-premixed flame. Both GRI-Mech 3.0 and GRI-Mech 2.11 are found to be able to predict the temperature and major species well. However, only GRI-Mech 2.11 gives an acceptable prediction of NO. It is found that major species can be interpolated from the TGLDM table which can significantly reduce the computational cost.  相似文献   

6.
A kinetic Monte Carlo (KMC) technique was adopted to simulate the growth dynamics of electrodeposited polycrystalline Ni thin films under kinetically limited conditions with a two-dimensional triangle lattice mapping the cross-section of the film. Effects of surface diffusion and surface-energy anisotropy on the microstructures of the plated film such as shape and size of grains, density, surface roughness, and textures were examined. This work focuses on the microstructure evolutions for different deposition parameters (for example, deposition rate and electrolyte temperature). We obtained the growth exponent β=0.46, which characterizes the scaling behavior of this growth. Preferential orientation of 1 1 1 and 1 0 0 have been observed at elevated temperature and at elevated deposition rate, respectively. To simulate the evolution of texture, the influence of hydrogen absorption on the surface energy of six main surfaces of nickel was investigated.  相似文献   

7.
Cubic-silicon carbide crystals have been grown from carbon-rich silicon solutions using the travelling-zone method. To improve the growth process, we investigated the effect of controlling more tightly some of the growth parameters. Using such improved growth conditions, our best sample is a 12 mm diameter and 3 mm long 3C–SiC crystal. It is grown on a (0001) 2 off, 6H–SiC seed and has 111-orientation. The low amount of silicon inclusions results in a reduced internal stress, which is demonstrated by the consideration of μ-Raman spectra collected at room temperature on a large number of samples.  相似文献   

8.
Sequences of experimental ground-state energies for both odd and even A are mapped onto concave patterns cured from convexities due to pairing and/or shell effects. The same patterns, completed by a list of excitation energies, give numerical estimates of the grand potential Ω(β,μ) for a mixture of nuclei at low or moderate temperatures T=β−1 and at many chemical potentials μ. The average nucleon number A(β,μ) then becomes a continuous variable, allowing extrapolations towards nuclear masses closer to the drip lines. We study the possible concavity of several thermodynamical functions, such as the free energy and the average energy, as functions of A. Concavity, which always occurs for the free energy and is usually present for the average energy, allows easy interpolations and extrapolations providing upper and lower bounds, respectively, to binding energies. Such bounds define an error bar for the prediction of binding energies. Finally we show how concavity and universality are related in the theory of the nuclear density functional.  相似文献   

9.
We investigate the entanglement dynamics and decoherence of a two-qubit system under a quantum spin environment at finite temperature in the thermodynamics limit. For the case under study, we find different initial states will result in different entanglement evolution, what deserves mentioning here is that the state |Ψ=cosα|01+sinα|10 is most robust than other states when π/2<α<π, since the entanglement remains unchanged or increased under the spin environment. In addition, we also find the anisotropy parameter Δ can suppress the destruction of decoherence induced by the environment, and the undesirable entanglement sudden death arising from the process of entanglement evolution can be efficiently controlled by the inhomogeneous magnetic field ζ.  相似文献   

10.
We analyse the optical properties of GaN homoepitaxies grown on semipolar ()- and ()- orientated GaN substrates. We find the optical anisotropy of the GaN films to be strictly ruled by the angle between the growth plane and the 0001 direction of the crystal. This anisotropy offers a wide range of applications in the domain of surface emitting devices like VCELs and cavity polariton lasers based on GaN but also for similar structures relying on ZnO-related materials.  相似文献   

11.
This study explores the nucleation and morphological evolution of silicon nanowires (Si-NWs) on Si (0 0 1) and (1 1 1) substrates synthesized using nanoscale Au–Si island-catalyzed rapid thermal chemical vapor deposition. The Au–Si islands are formed by Au thin film (1.2–3.0 nm) deposition at room temperature followed by annealing at 700 °C, which are employed as a liquid-droplet catalysis during the growth of the Si-NWs. The Si-NWs are grown by exposing the substrates with Au–Si islands to a mixture of gasses SiH4 and H2. The growth temperatures and the pressures are 500–600 °C and 0.1–1.0 Torr, respectively. We found a critical thickness of the Au film for Si-NWs nucleation at a given growth condition. Also, we observed that the dimensional evolution of the NWs significantly depends on the growth pressure and temperature. The resulting NWs are 30–100 nm in diameter and 0.4–12.0 μm in length. For Si (0 0 1) substrates 80% of the NWs are aligned along the 1 1 1 direction which are 30° and 60° with respect to the substrate surface while for Si (1 1 1) most of the NWs are aligned vertically along the 1 1 1 direction. In particular, we observed that there appears to be two types of NWs; one with a straight and another with a tapered shape. The morphological and dimensional evolution of the Si-NWs is significantly related to atomic diffusion kinetics and energetics in the vapor–liquid–solid processes.  相似文献   

12.
Gd1−xCaxBaSrCu3O7−δ samples (0  x  0.1) were prepared via solid-state reaction. Four-point probes method was used for resistance versus temperature measurements. Results show decrease in Tc by increasing x content. This variation is assumed to be irrelevant to the different phases or impurity effects since X-ray patterns show all samples are tetragonal single-phase. Ca doping decreases the oxygen content and lattice parameters of the samples. It is suggested that Ca prevents the dislocation of oxygen, and then disrupts the hole concentration of the system and antiferromagnetic correlation at CuO2 planes. Subsequently, destroys the superconductivity of the samples.  相似文献   

13.
Vertically coupled quantum wires (QWRs) have been made by alternately stacking nominally 3.6 nm thick In0.53Ga0.47As self-organized QWR layers and 1 nm thick In0.52Al0.48As barrier layers on (2 2 1)A-oriented InP substrates by molecular beam epitaxy. The surface of In0.53Ga0.47As QWR layers was corrugated at an amplitude of 1.1 nm and period of 27 nm, and lateral confinement potential is induced by their thickness modulation. The wavelength of photoluminescence (PL) from the stacked QWRs at 15 K becomes longer from 1220 to 1327 nm with increasing total number of stacked QWR layers, NSL, from 1 to 9, while PL full-width at half-maximum is reduced from 22 to 8.6 meV. The PL intensity with the polarization parallel to the wire direction, I, is 1.30 times larger than that with the normal polarization, I, when NSL=1. The PL intensity ratio, I/I, reaches as large as 4 when NSL=9, indicating successful control of relative strength between vertical confinement and lateral confinement of carriers. The value of I/I obtained for the stacked QWRs with NSL=9 is the same value as cylindrical QWRs have. The results indicate that effectively cylindrical QWRs with the best uniformity and 1.3 μm range emission were realized by stacking of self-organized QWR layers.  相似文献   

14.
ZnO nanoinjectors were synthesized on Au-coated Si substrate by direct thermal evaporation of zinc powder at a low temperature of 600 °C and atmospheric pressure. Field-emission scanning electron microscopy and X-ray diffraction were applied to study the structural characteristics of the sample. The result indicated that the nanoinjector sample consisted of single-crystalline wurtzite structures which were preferentially oriented in the 0 0 1 direction. The field emission of the sample started at a turn-on field of 1.5 V/μm at a current density of 1 μA/cm2, while the emission current density reached about 1 mA/cm2 at an applied field of 5.0 V/μm.  相似文献   

15.
Vertically aligned carbon nanotubes (CNT) have been grown in a DC-PECVD apparatus on quartz membranes. 1 0 0-oriented Si wafer has been anisotropically etched in a KOH solution. A mixture of acetylene and hydrogen gases is used to grow CNT while Ni acts as the catalyst layer. As-grown structures have been coated by titanium dioxide using chemical vapor deposition at atmospheric pressure. By means of a polishing and ashing process steps followed by total removing of the quartz membrane both ends of CNTs are opened and nano holes are obtained. SEM analysis is used to study the evolution of such nanostructures.  相似文献   

16.
Polycrystalline TbMn2O5 was prepared by the standard solid-state reaction method and characterized by powder X-ray diffraction and magnetization to assure it is of single phase. Heat capacity measurements on the compound reveal an antiferromagnetic phase transition at 45 K. A broad peak below 6 K in the heat capacity measurements corresponds to the crossover transition of Tb3+ ordering. To confirm these magnetic orderings, neutron powder diffractions on TbMn2O5 with XYZ neutron polarization analysis were performed at the diffuse neutron scattering (DNS) spectrometer, FRJ-II, by using neutron wavelength of 4.8 Å in the temperature range of 1.8–250 K. Magnetic scattering was separated from nuclear coherent and spin incoherent scattering contributions. Long-range ordered magnetic peaks were observed below 39 K which is consistent with the heat capacity results. The drastic increasing intensities below 6 K indicate the ferromagnetic transition in Tb3+ orderings.  相似文献   

17.
The microstructures and the microwave dielectric properties of the (1 − x)(Mg0.95Co0.05)TiO3x(Na0.5La0.5)TiO3 ceramic system were investigated. Two-phase system was confirmed by the XRD patterns and the EDX analysis. A co-existed second phase (Mg0.95Co0.05)Ti2O5 was also detected. The microwave dielectric properties are strongly related to the density and the matrix of the specimen. A new microwave dielectric material 0.88(Mg0.95Co0.05)TiO3–0.12(Na0.5La0.5)TiO3, possessing an excellent combination of dielectric properties: εr  22.36, Q × f  110,000 GHz (at 9 GHz), τf  2.9 ppm/°C), is proposed as a candidate dielectric for GPS patch antennas.  相似文献   

18.
(K0.5Na0.5)NbO3 (KNN) single crystals were grown using a high temperature flux method. The dielectric permittivity was measured as a function of temperature for [001]-oriented KNN single crystals. The ferroelectric phase transition temperatures, including the rhombohedral–orthorhombic TRO, orthorhombic–tetragonal TOT and tetragonal–cubic TC were found to be located at −149  C, 205 C and 393 C, respectively. The domain structure evolution with an increasing temperature in [001]-oriented KNN single crystal was observed using polarized light microscopy (PLM), where three distinguished changes of the domain structures were found to occur at −150  C, 213 C and 400 C, corresponding to the three phase transition temperatures.  相似文献   

19.
Using the collinear QCD factorization approach, we study the single-transverse-spin dependent cross section Δσ(S) for the hadronic production of two jets of momenta P1=P+q/2 and P2=−P+q/2. We consider the kinematic region where the transverse components of the momentum vectors satisfy PqΛQCD. For the case of initial-state gluon radiation, we show that at the leading power in q/P and at the lowest non-trivial perturbative order, the dependence of Δσ(S) on q decouples from that on P, so that the cross section can be factorized into a hard part that is a function only of the single scale P, and into perturbatively generated transverse-momentum dependent (TMD) parton distributions with transverse momenta .  相似文献   

20.
A kind of modulation doped structure of n-type nanocrystalline hydrogenated silicon (nc-Si:H) film with intrinsic nc-Si:H layer with p-type bulk Si 100 substrate was proposed. The numerical self-consistent solutions of one-dimensional Schrödinger and Poisson equations along the direction normal to the heterojunction were performed to calculate the distribution of electron density and profiles of conduction-band as a function of ionized donor concentration in doped film, thickness of intrinsic layer, and other device parameters in the junctions. The calculated results are shown to be in agreement with experimental data. The relation of mobility vs sheet density of two-dimensional electron gases under different scattering mechanisms was analyzed. The obtained consequences may be used to evaluate optimum design for the modulation doped nc-Si:H-based devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号