首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Treatment of the chloro-bridged dinuclear compounds [{Pd[RC6H3C(H)NCy-C2,N]}(μ-Cl)]2 (R = 4-(COH), 1; R = 5-(COH), 2) with bidentate phosphorus or arsenic diphosphines or diarsine ligands in 1:1 molar ratio gave the dinuclear complexes [{Pd[RC6H3C(H)NCy-C2,N](Cl)}2{μ-(o-Tol)2P(CH2)2P(o-Tol)2}] (R = 4-(COH), 3; R = 5-(COH), 4), [{Pd[RC6H3C(H)NCy-C2,N](Cl)}2{μ-Ph2PC4H2(NH)CH2PPh2}] (R = 4-(COH), 5; R = 5-(COH), 6) and [{Pd[RC6H3C(H)NCy-C2,N](Cl)}2{μ-Ph2As(CH2)2AsPh2}] (R = 4-(COH), 7; R = 5-(COH), 8) with the homobidentate [P,P] and [As,As] ligands in a bridging mode. Treatment of 1 and 2 with the aminophosphine Ph2P(CH2)2NH2 yields the dinuclear complexes [{Pd[RC6H3C(H)NCy-C2,N](Cl)}2{μ-Ph2P(CH2)2NH2}] (R = 4-(COH), 9; R = 5-(COH), 10). The analogous reactions carried out in a 1:2 molar ratio, in the presence of NH4PF6 or NaClO4, gave the mononuclear compounds [Pd{RC6H3C(H)NCy-C2,N}{(o-Tol)2P(CH2)2P(o-Tol)2-P,P}][PF6] (R = 4-(COH), 11; R = 5-(COH), 12), [Pd{RC6H3C(H)NCy-C2,N}{Ph2PC4H2(NH)CH2PPh2-P,P}][ClO4] (R = 4-(COH), 13; R = 5-(COH), 14) and [Pd{RC6H3C(H)NCy-C2,N}{Ph2As(CH2)2AsPh2-As,As}][ClO4](R = 4-(COH), 15; R = 5-(COH), 16), with the [P,P] and [As,As] ligands chelated to the palladium atom.Treatment of 2 with Ph2P(CH2)3NH2 in a 1:2 molar ratio in acetone in the presence of NH4PF6 afforded the mononuclear compound [Pd{5-(COH)C6H3C(H)NCy-C2,N}{Ph2P(CH2)3N(Me2)-P,N}][PF6], 17, via intermolecular condensation between the aminophosphine and the solvent. Condensation was precluded using toluene as solvent to give [Pd{RC6H3C(H)NCy-C2,N}{Ph2P(CH2)nNH2-P,N}][PF6], (n = 3, R = 5-(COH), 18; n = 2, R = 4-(COH), 19; n = 2, R = 5-(COH), 20). Treatment of 1 and 2 with Ph2P(C6H4)CHO in a 1:2 molar ratio in the presence of NH4PF6 gave the mononuclear complexes [Pd{RC6H3C(H)NCy-C2,N}{2-(Ph2P)C6H4CHO-P,O}][PF6] (R = 4-(COH), 21; R = 5-(COH), 22) with the palladium atom bonded to four different atoms (C, N, P, O) and a chelating [P,O] ligand. The crystal structures of compounds 7, 11, 15 and 21 have been determined by X-ray crystallography.  相似文献   

2.
Hydroxy-amino-diphosphonates HO-Cn-NH2, with 2 ? n ? 11, have been successfully synthesized via the Kabachnick-Field reaction at 70 °C with high yields. These hydroxy compounds are then reacted with methacryloyl chloride to lead to novel amino-diphosphonate methacrylates MACnNP2 (with 2 ? n ? 11). These highly pure methacrylate monomers were obtained with yields higher than 75%. Radical copolymerizations of MACnNP2 (with 2 ? n ? 11) with MMA have been conducted and the r1 values (related to MACnNP2) are in the range of 1.1-1.3, and r2 values (related to MMA) about 0.8; this shows that the diphosphonate groups are statistically bonded to the methacrylic backbone.  相似文献   

3.
The reaction of N9,N9′-(tri or tetramethylene)-bisadenines (Ade2Cx; x = 3 or 4) in HCl 2 M at 50 °C with MCl2 · 2H2O [M = Zn(II), Cd(II)] yields outer sphere compounds like the previously described [(H-Ade)2C3][ZnCl4] · H2O (3) and [(H-Ade)2C3]2[Cd2Cl8(H2O)2] · 4H2O (4) for Ade2C3 and the new {[(H-Ade)2C4][Cd2Cl6(H2O)2] · 2H2O}n (5) for Ade2C4. On the other hand, only in case of Zn(II) complexes by changing [HCl] to 0.1 M, the inner sphere compounds [H-(Ade)2C3(ZnCl3)] (6) and [H-(Ade)2C4(ZnCl3)] · 1.5H2O (7) are obtained. X-ray diffraction study of compound 6, which represents the first inner sphere complex with a N9,N9′-bisadenine, shows a zwitterionic form with one adenine ring protonated at N(1) while the other ring is coordinated via N(7) to a ZnCl3 moiety as in other alkyl-adenine derivatives. In addition, with Ade2C4, is also possible to obtain another inner sphere complex: [(H-Ade)2C4(ZnCl3)2] · 3H2O (8).  相似文献   

4.
The geometry and chemical bonding in the closo metal-free boranes and the isoelectronic carboranes and C2Bn−2Hn with 2n + 2 skeletal electrons are based on the most spherical deltahedra with a preference for degree 5 vertices, particularly for the boron atoms. Such deltahedral boranes can be considered to be three-dimensional aromatic systems, as indicated by strongly diatropic nucleus independent chemical shift values for (n = 6, 8, 9, 12). Metallaborane structures, particularly those with 9-11 vertices and only 2n rather than 2n + 2 apparent skeletal electrons, are often based on isocloso deltahedra with the metal atom at a degree 6 vertex. Dimetallaborane structures, particularly the rhenium derivatives Cp2Re2Bn−2Hn−2 (8 ? n ? 12), are based on highly non-spherical and very oblate deltahedra with the metal atoms typically at degree 6 or 7 vertices, which are the lowest curvature sites of the deltahedra. A viable model for the skeletal bonding in such dimetallaboranes can be developed if each of the two metal vertices is assumed to contribute five internal orbitals to the skeletal bonding. This leads to 2n + 4 skeletal electrons, which are partitioned into n surface bonds and a formal metal-metal double bond inside the oblate deltahedron.  相似文献   

5.
Treatment of triethylaluminum with 3,5-diphenylpyrazole in a 2:1 stoichiometry afforded the ethyl-bridged complex Et2Al(μ-Ph2pz)(μ-Et)AlEt2 (79%) as a colorless crystalline solid. Treatment of tri-n-propylaluminum with 3,5-di-tert-butylpyrazole in a 2:1 stoichiometry afforded the n-propyl-bridged complex (nPr)2Al(μ-tBu2pz)(μ-nPr)Al(nPr)2 (63%) and the dimeric complex [(nPr)2Al(μ-tBu2pz)]2 (3%), respectively, as colorless crystalline solids. Treatment of tri-n-propylaluminum (1 equiv.) or triisobutylaluminum (1 or 2 equiv.) with 3,5-di-tert-butylpyrazole afforded exclusively the dimeric complexes [(nPr)2Al(μ-tBu2pz)]2 (68%) or [(iBu)2Al(μ-tBu2pz)]2 (96%), respectively, as colorless crystalline solids. The solid state structures of Et2Al(μ-Ph2pz)(μ-Et)AlEt2 and (nPr)2Al(μ-tBu2pz)(μ-nPr)Al(nPr)2 consist of 3,5-disubstituted pyrazolato ligands with a di-n-alkylalumino group bonded to each nitrogen atom. An ethyl or n-propyl group acts as a bridge between the two aluminum atoms. The kinetics of the bridge-terminal exchange was determined for the bridging n-alkyl complexes by 13C NMR spectroscopy, and afforded ΔH = 1.5 ± 0.1 kcal/mol, ΔS = −46.8 ± 39.0 cal/K mol, and for Et2Al(μ-Ph2pz)(μ-Et)AlEt2 and ΔH = 1.7 ± 0.1 kcal/mol, ΔS = −46.6 ± 43.4 cal/K mol, and for (nPr)2Al(μ-tBu2pz)(μ-nPr)Al(nPr)2. The negative values of ΔS imply ordered transition states relative to the ground states, and rotation along the N-AlR3 vector without aluminum-nitrogen bond cleavage is proposed.  相似文献   

6.
The Schiff base compound, N,N′-bis(trifluoromethylbenzylidene)ethylenediamine (C18H14F6N2) (1), CF3C6H4CHNCH2CH2NCHC6H4CF3 has been synthesized by adding a solution of ethylenediammine (en), 0.1 mmol in chloroform to 4-(trifluoromethyl)-benzaldehyde, CF3C6H4CHO (0.2 mmol) and the product was crystallized in ethanol with the mp, 109.2 °C and 75% yield. The crystal structure was investigated by a single-crystal X-ray diffraction study at 150 K. The compound crystallizes in monoclinic space group, P21/c with a = 9.295(3), b = 5.976(5), c = 15.204(9) Å and α = 90°, β = 96.56(5)° and γ = 90°. The crystal structure is stabilized by intermolecular CH · · · F hydrogen bonds. The asymmetric unit contains only one-half of the molecule related to the center of symmetry coinciding with C(1)-C(1′) and as a whole, the title molecule is in the staggered conformation. The phenyl rings and the CN imine bonds are co-planar. The infrared spectrum showed a sharp peak at 1640 cm−1 which is typical of the conjugated CN stretching and strong peaks at 800-1400 cm−1 regions are due to the C-C and C-H stretching modes. Electronic absorption spectra exhibits strong absorption in the UV region (240 nm wavelength) which have been ascribed to , and electronic transitions. The 1H NMR spectra showed three distinct peaks at 2.5, 7.8 and 8.5 ppm which are assigned based on the splitting of resonance signals and are clearly confirmed by the X-ray molecular structure. The aromatic protons appear at about 7.8 ppm and the imine protons at 8.5 ppm. The sharp singlet at about 3.95 ppm is assigned to the CH2-CH2 protons. Mass spectra of the titled compound showed the molecular ion peak at m/e 372 (M+), and fragments at m/e 353 (M-F), 342 (M-2F), 200 (M-CF3C6H4CHN), 186 (M-CF3C6H4CHNCH2).  相似文献   

7.
A novel conjugation-elongated bis(ethylenedithio)tetraselenafulvalene (BETS) type donor, 2,5-bis(4,5-ethylenedithio-1,3-diselenol-2-ylidene)-2,3,4,5-tetrahydrothiophene (BEDT-HBDST) and its magnetic and non-magnetic anion salts, (BEDT-HBDST)2MX4 (MX4=FeCl4, GaCl4, FeBr4 and GaBr4), were prepared. These four salts are isostructural and belong to the space group of P2/c. They showed semiconducting behavior with small activation energies (59-64 meV). The band structures of these salts are quasi one-dimensional and there is a midgap between the upper band and the lower band, since the degree of dimerization is significant in the stacking direction. The MX4 ions are located between the donor columns and near to the ethylenedithio moieties of the donor molecules. The magnetic susceptibilities of the FeCl4 and FeBr4 salts follow the Curie-Weiss law with Curie constants of 4.6 and 4.8 emu K mol−1 (sum of the spins of S=5/2 and S=1/2) and negative Weiss temperatures of θ=−1.2 and −4.9 K, respectively, revealing a weak antiferromagnetic interaction of 3d spins of the FeCl4 and FeBr4 anions. The Fe?Fe (6.66-7.60 Å), Cl?Cl (4.81-4.82 Å) and Br?Br (4.74-4.77 Å) distances in the crystal structures of these salts are significantly long. Therefore, the direct magnetic interaction between the 3d spins of the nearest neighboring Fe3+ ions appears to be not readily accessible.  相似文献   

8.
2,4,6-Triphenylpyrylium tetrafluoroborate (TPPBF4)-sensitized photoinduced electron-transfer (PET) reactions of 1,4-diaryl-2,3-dioxabicyclo[2.2.2]octanes 5 (a: Ar1 = Ar2 = p-MeOC6H4, b: Ar1 = Ar2 = p-MeC6H4, c: Ar1 = Ar2 = Ph) underwent novel fragmentation through their radical cations to give 1,4-diarylbutan-1,4-diones 6 accompanied by elimination of ethylene. On the other hand, 4-aryl-cyclohex-3-en-1-ones 7, p-substituted phenols 8, and 4-aryl-4-aryloxycyclohexanones 9 were produced through proton-catalyzed pathways when the PET reactions of 5 were performed in the absence of a certain base such as 2,6-di-tert-butylpyridine (DTBP). Particularly, the formation of 9 is consistent with the novel cationic rearrangement involving nucleophilic O-1,2-aryl shifts and C-1,4-aryl shifts.  相似文献   

9.
The coordinating properties of N-o-chlorobenzamido-meso-tetraphenylporphyrin (N-NHCO(o-Cl)C6H4-Htpp; 11) have been investigated for the Zn2+ ion. Insertion of Zn results in the formation of the zinc complex Zn(N-NCO(o-Cl)C6H4-tpp)(MeOH) · MeOH (12 · MeOH). The diamagnetic 12 · MeOH can be transformed into the diamagnetic Zn(N-NHCO(o-Cl)C6H4-tpp)Cl · CH2Cl2 (13 · CH2Cl2) in a reaction with aqueous hydrogen chloride (2%). X-ray structures for 12 · MeOH and 13 · CH2Cl2 have been determined. The coordination sphere around the Zn2+ ion in 12 · MeOH is a distorted trigonal bipyramid with N(2), N(4) and O(2) lying in the equatorial plane, whereas for the Zn2+ ion in 13 · CH2Cl2, it is a square-based pyramid in which the apical site is occupied by the Cl(1) atom.  相似文献   

10.
The Sn(IV) R2SnCl2(γ-pyrone)n [R = Me or Ph; γ-pyrone = 4H-pyran-4-one (PYR) or 2,6-dimethyl-4H-pyran-4-one (DMP); n = 1 or 2] adducts have been synthesized and investigated. The adducts Ph2SnCl2(PYR) (1), Me2SnCl2(PYR)2 (2), Ph2SnCl2(DMP) (3) and Me2SnCl2(PYR)(PNO) (4), (PNO = 4-methylpyridine N-oxide) have been prepared by the addition of the corresponding γ-pyrone to chloroform solution of R2SnCl2. The new compounds have been characterized by elemental analysis and spectroscopic (IR, 1H, 13C NMR and Mössbauer) means. The single-crystal diffraction study of 1 shows the Sn(IV) to be five-coordinate, [Sn-O and Sn-Cl(1), Sn-Cl(2) distances of 2.3190(13) and 2.4312(6), 2.3653(7), respectively], and the Cl-Sn-Cl bond angle to be 91.17°. The reactivity of 2 towards bipy, Ph3PO, QNO (Q = quinoline) resulted in complete displacement of PYR and formation of already known compounds whereas, the PNO displaced only one equivalent of PYR, causing the preparation of the new mixed complex 4, possibly through a SN1 formation mechanism. DFT/B3LYP molecular orbital calculations were carried out for the 1-4 complexes, their precursors, Ph2SnCl2, (5) and Me2SnCl2, (6) and the ligands, PYR, DMP and PNO in an attempt to explain the structures and reactivity of the complexes. Optimized resulting geometries, vibrational frequencies, and the electron-accepting ability of the complexes and the precursors towards nucleophiles are discussed.  相似文献   

11.
4-Phosphoranylidene-5(4H)-oxazolones 1 undergo hydrolysis in THF in the presence of HBF4 at room temperature to give N-acyl-α-triphenylphosphonioglycines 3 (R2 = H) in very good yields. 4-Alkyl-4-triphenylphosphonio-5(4H)-oxazolones 2 react with water in CH2Cl2/THF solution without any acidic catalyst at 0-5 °C in a few days yielding N-acyl-α-triphenylphosphonio-α-amino acids 3 (R2 = Me) or α-(N-acylamino)alkyltriphenylphosphonium salt 4 (R2 = CH2OMe). α-Triphenylphosphonio-α-amino acids 3, on heating up to 105-115 °C under reduced pressure (5 mmHg) or on treatment with diisopropylethylamine in CH2Cl2 at 20 °C undergo decarboxylation to give the corresponding α-(N-acylamino)alkyltriphenylphosphonium salts 4, usually in very good yields.  相似文献   

12.
Liquid–liquid equilibria of systems water (A) + CiEj surfactant (B) + n-alkane (C) have been modeled by a mass-action law model previously developed and so far successfully applied to a series of binary water + CiEj systems and to the ternary system water + C4E1 + n-dodecane. These calculations provide the basis for the presented modeling. The aqueous systems give information about the association constants and the χAB-parameter of the Flory–Huggins theory and the ternary C4E1-system provides universal temperature functions for the χAC- and the χBC-parameter. The three-phase equilibrium for seven ternary CiEj systems (i = 6–12, j = 3–6) has been calculated by fitting one additional parameter for each of both temperature functions to the characteristic “fish-tail” point. The agreement with the experimental data is reasonably well. For systems with very small three-phase areas the results can considerably be improved by individual temperature functions that incorporate the experimental temperature maximum of the “fish” into the parameter fit. Based on the parameters of the system water + C8E4 + n-C8H18 the “fish-shaped” phase diagram of the system water + C8E4 + n-C14H30 was predicted reasonably well.  相似文献   

13.
A series of Ru(acac)24-diene) complexes containing cis- and trans-diene coordination have been investigated by cyclic voltammetry to correlate structural bonding and conformation patterns of diene ligands with redox behaviors. The solid-state structure of Ru(acac)2(2,3-dimethyl-1,3-butadiene) has been determined by single crystal X-ray diffraction methods. Ru(acac)2(2,3-dimethyl-1,3-butadiene) crystallizes in the monoclinic space group C2/c with a = 12.368(2) Å, b = 17.0600(2) Å, c = 16.0110(2) Å, β = 98.4405(10)° and V = 3341.38(10) Å3 for Z = 8. A structural comparison between several Ru-trans4-diene complexes and Ru-η4-1,3-cyclohexadiene revealed no difference in the Ru-C(diene) bond distances. However, through cyclic voltammetry experiments these species demonstrated different redox behavior, as function of the coordinated diene ligand.  相似文献   

14.
Two novel polynuclear complexes with methanoate anions and 3-hydroxypyridine ligands [Cu(μ-HCO2)2(3-pyOH)]n (1) and [Cu2(μ-HCO2)2(μ-3-pyOH)2(3-pyOH)2(HCO2)2]n (2), respectively, were synthesized and characterized. The central copper atom in 1 is surrounded by four methanoates and a 3-pyOH molecule, forming a square-pyramidal CuO3NO chromophore. All the methanoates are bidentate and serve as bridges between the adjacent copper ions via syn-anti and anti–anti coordination. The basal square coordination axes are formed by O(syn), N(3-pyOH) (1.974(2), 2.016(2) Å) and O(anti), O(anti) (1.945(2), 1.960(2) Å), while the third O(anti) (2.247(2) Å) is on the top of the pyramid. A ferromagnetic transition with an exchange constant 2J/kB = 9.2 cm−1 is found for 1 below 20 K. This interaction probably takes place through two syn-anti methanoates extended in a chain through the 2D structure. On the other hand, two monoatomic Cu–O–Cu intra-dinuclear asymmetric (1.986(2), 2.415(2) Å) bridges of two methanoates in [Cu2(HCO2)4(3-pyOH)4] (2) are present. An elongated distorted octahedral coordination sphere around each copper(II) atom is completed by an additional monodentate terminal methanoate (1.975(2) Å), two N-coordinated 3-pyOH (2.005(2), 2.002(2) Å) and the third weakly O-coordinated 3-pyOH (2.732(2) Å). Although a shorter Cu?Cu distance is noticed in 2 than in 1 (4.690(1) Å 1, 3.442(1) Å 2), much weaker ferromagnetism is found in 2.  相似文献   

15.
A new zinc(II) complex of the mycobactericidal drug isoniazid (complex 1) was synthesized and characterized by XRD, vibrational spectroscopy (IR, Raman) and thermogravimetric analysis. The complex is constituted by two isoniazid (INH) molecules, six hydration water molecules and two perchlorate counter-ions for each metal center (C12H26N6Cl2O16Zn). Zinc(II) adopts a distorted octahedral geometry, where two INH molecules coordinate in a bidentate manner through the hydrazide group (N, O) and the other two isoniazid residues complete the coordination sphere of zinc(II) through their aromatic nitrogen atoms. This coordination pattern gives rise to a 2-D coordination polymer. Complex 1 belongs to the monoclinic system [a = 8.1190(2) Å, b = 17.977(4) Å, c = 9.1051(2) Å and β = 100.87(3)°], space group P21. A biological assay with Artemia salina was also performed. Complex 1 is almost 8.5 times more active than the free ligand. Its toxicity against A. salina correlates well with the cytotoxic activity for some human solid tumors. Therefore, antitumoral properties could be expected from complex 1.  相似文献   

16.
Tetra-ether substituted imidazolium salts, LHX (where LH = N,N′-bis(2,2-diethoxyethyl)imidazolium cation and X = Br, BF4, PF6, BPh4, NO3 and NTf2 anions) were derived from imidazole. Attempts to produce aldehyde functionalized imidazolium salt through acid hydrolysis of LHBr resulted an unexpected tetra-hydroxy compound LAHBr and the dialdehyde compound LBHBr. Reaction of LHBr with Ag2O afforded [L2Ag][AgBr2] (1). Mononuclear Pd-complex trans-[L2PdCl2] (2) and dinuclear Pd-complex [(LPdCl2)2] (3) were obtained by 1:1 and 1:2 reaction of in situ generated Ag-carbene with Pd(CH3CN)2Cl2. cis-[LPdPPh3Cl2] (4) was synthesized from reaction of PPh3 with dinuclear complex 3. Hydrolysis of 3 under acidic conditions also generates a hydroxy derivative 3A and the aldehyde derivative 3B. Direct heating of LHBr with Ni(OAc)2 · 4H2O at 120 °C under vacuum generated trans-[L2NiBr2] (5). These complexes were characterized by NMR, mass, elemental analysis, and X-ray single crystal diffraction analysis. Pd--Pd interaction was observed in 3. All the Pd complexes exhibited excellent catalytic activity in Heck reaction.  相似文献   

17.
Several known and eight new sulfur containing acylferrocenes of the general formula FcCO(CH2)nSR (where Fc = ferrocenyl, n = 1 or 2 and R = alkyl, 4-bromobenzyl or 2,6-dichlorobenzyl group) were synthesized in order to test their in vitro antimicrobial activity against 11 bacterial and three fungal/yeast strains. It has been shown that only four of the 14 ketones are completely inactive at the tested dose, while the activities of the other ones were noteworthy. All new compounds were well characterized by IR and NMR spectral data, and their electrochemical properties were investigated by cyclic voltammetry. The X-ray crystal structures of two representative ketones are also presented.  相似文献   

18.
The homoleptic aryl copper reagent [Cu4Dipp4] (Dipp = 2,6-diisopropylphenyl) has been prepared and structurally characterized by a single-crystal X-ray diffraction study. Its tetrameric structure differs in significant details from that of the previously reported [Cu4Tripp4] (Tripp = 2,4,6-triisopropylphenyl). The electronic structure of the cluster has been probed through B3LYP/6311G(2d,p)//B3LYP/6-31G calculations on [Cu4Ph4] constrained to D2d symmetry. The utility of the new copper reagent is demonstrated by the preparation of pure DippPCl2, for which the crystal structure is also reported.  相似文献   

19.
Layered zirconium benzylamino-N,N-dimethylphosphonate phosphate (ZBMPA) was prepared by the reaction of zirconyl chloride with benzylamino-N,N-dimethylphosphonic acid (H2BMPA) and phosphoric acid in the presence of hydrofluoric acid. The intercalation of n-alkylamines (n-butylamine, n-heptylamine and n-decylamine) into ZBMPA was primarily investigated at room temperature. These materials were characterized by elemental analysis, ICP, XRD, SEM, FT-IR, Raman spectra, TG and DSC. The composition of ZBMPA is Zr(HPO4)(C6H5CH2N(CH2PO3)2)0.5 · 2.0H2O. The interlayer distance of ZBMPA, n-butylamine, n-heptylamine and n-decylamine intercalation compounds is 2.03, 2.58, 2.52 and 3.17 nm, respectively. ZBMPA and the n-alkylamine intercalation compounds are different in the morphology and vibration spectra. Thermogravimetries of all materials obtained reveal three step mass losses at temperatures of up to 1000 °C. These results indicate that n-alkylamines are intercalated into the galleries of host ZBMPA.  相似文献   

20.
It has been suggested recently that the alanes AlnHn + 2 can be treated by the polyhedral skeletal electron pair theory (PSEPT) of Wade and Mingos (W-M) as it was successful for their borane congeners such as BnHn + 2, well known as the deprotonated BnHn2−. To do so, the neutral AlnHn + 2 have been considered as AlnHn2− + 2H+. The additional hydrogens donate their electrons to the AlnHn polyhedral framework and according to the n + 1 electron pairs rule; these clusters should have closo-polyhedral structures. In this work the homologous gallanes, the structures and stabilities of GanHn + 2 are studied at high levels of calculational theory and we investigated the applicability of the W-M rule to the alanes and gallanes AnHn + 2 (n = 4-6; A = Al, Ga). It will be shown that the presence of bridging hydrogen atoms reduces the compactness of the corresponding polyhedron and so these species do not have the closed structures. The computations were performed at B3LYP/6-311+G(d,p), BPW91/6-311G(d,p) and B3LYP/6-311+G(3df,2p) levels of theory. Our interest in these compounds includes their potential use as hydrogen storage species and future clean sources of energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号