首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CH3NO2和CH3自由基吸氢反应途径和变分速率常数计算   总被引:1,自引:0,他引:1  
采用MP2(full)/6-311G(d, p)从头算方法,优化了硝基甲烷和甲基自由基吸氢反应的过渡态结构,经QCISD(T)方法进行能量校正,得出该反应的正逆向反应的活化位垒分别是58.21 kJ•mol-1和67.17 kJ•mol-1.沿IRC分析指出该反应是氢转移协同反应,而且在反应途径上存在一个引导反应进行的振动模式,这一反应模式引导反应进行的区间在反应坐标S的-0.9~1.0(amu)1/2bohr之间;在温度为800~2600 K范围内,运用改进的变分过渡态理论(ICVT),计算了该反应的速率常数,并与实验类比所得的速率常数随温度的变化趋势进行了比较.  相似文献   

2.
CH2O+O[3P]→CHO+OH反应途径和变分速率常数   总被引:1,自引:0,他引:1  
采用QCISD/6-311G[d,p]从头算方法,优化了吸氢反应CH2O+O[3P]→CHO+OH的反应物、过渡态和产物的几何结构,并用QCISD(t,full)/6-311G**//QCISD/6-311G**方法对各驻点进行了单点校正,得出正逆反应的活化位垒分别为38.86kJ@mol-1和67.23kJ@mol-1.IRC(内禀反应坐标)分析指出,该反应是一个C-H键断裂和H-O键生成协同进行的反应,而且在反应途径上存在一个引导反应进行的振动模式,其引导反应进行s区间为-0.4~0.75(amu)1/2.在1300~2270K温度范围内运用改进的变分过渡态理论(ICVT),计算了反应速率常数,与实验结果相当一致.  相似文献   

3.
H+CH3NO2H2+CH2NO2反应途径和变分速率常数计算研究   总被引:1,自引:0,他引:1  
采用MP2(FULL)/6-311G**从头算方法, 优化了H+CH3NO2H2+ CH2NO2反应的过渡态结构, 得出该反应的正逆反应的活化位垒分别是82.73和57.14 kJ*mol-1. 沿IRC分析指出该反应是一个H-H键生成和C-H键断裂的协同反应, 而且在反应途径上存在一个引导反应进行的振动模式, 这一反应模式引导反应进行的区间在-0.7~0.2( amu)1/2*a0之间; 在1 000~1 400 K温度范围内, 运用变分过渡态理论(CVT), 计算了该反应的速率常数, 计算结果与实验相一致.  相似文献   

4.
CH2O+O[^3P]→CHO+OH反应途径和变分速率常数   总被引:1,自引:0,他引:1  
采用QCISD/6-311G犤d,p犦从头算方法,优化了吸氢反应CH2O+O犤3P犦→CHO+OH的反应物、过渡态和产物的几何结构,并用QCISD(t,full)/6-311G//QCISD/6-311G方法对各驻点进行了单点校正,得出正逆反应的活化位垒分别为38.86kJ·mol-1和67.23kJ·mol-1.IRC(内禀反应坐标)分析指出,该反应是一个C-H键断裂和H-O键生成协同进行的反应,而且在反应途径上存在一个引导反应进行的振动模式,其引导反应进行s区间为-0.4~0.75(amu)1/2.在1300~2270K温度范围内运用改进的变分过渡态理论(ICVT),计算了反应速率常数,与实验结果相当一致.  相似文献   

5.
CH2O+H→CHO+H2反应途径和变分速率常数计算研究   总被引:1,自引:0,他引:1  
采用QCISD/6-311G^** 从头算方法,优化了吸氢反应CH2O+H→CHO+H2的反应物、过渡态、产物几何结构,得出该反应的正、逆反应活化位垒分别是35.4kJ/mol和98.8kJ/mol。沿IRC分析指出该反应是一个C—H键断裂和H—H键生成协同进行的反应,而且在反应途径上存在一个引导反应进行的振动模式,这一反应模式引导反应进行的区间在—0.4~0.55(amu)^1/2之间。在300~3200K温度范围内,运用变分过渡态理论(CVT),计算了该反应的速率常数。  相似文献   

6.
马咏梅  王艳丽 《化学通报》2014,77(6):539-544
在B3LYP/6-31G(d,p)水平上优化了Cl原子与CH3COCH2Cl反应的各驻点的几何构型,并在相同水平上通过频率计算和内禀反应坐标(IRC)分析对过渡态的结构和反应物、产物的连接性进行了验证。采用高精确模型G3MP2方法进行单点能计算,构建了反应的势能剖面。计算结果表明,标题反应有抽氢反应、加成-消除反应、取代反应3种反应机理6条反应通道。利用经典过渡态理论(TST)和正则变分过渡态理论(CVT)计算了各反应通道在200~2000 K温度范围内的速率常数,并用小区率隧道效应模型(SCT)对抽氢反应进行校正。计算结果显示,反应有一定的变分效应,计算的总反应速率常数与文献报道的实验值符合得较好,速率常数的三参数表达式为k=2.33×10-19T2.54exp(567.07/T)cm3·mol-1·s-1。  相似文献   

7.
采用双水平直接动力学方法对C2H3与CH3F氢抽提反应进行了研究. 在QCISD(T)/6-311++G(d, p)//B3LYP/6-311G(d, p)水平上, 计算的三个反应通道R1、R2和R3的能垒(ΔE)分别为43.2、43.9和44.1 kJ·mol-1, 反应热为-38.2 kJ·mol-1. 此外, 利用传统过渡态理论(TST)、正则变分过渡态理论(CVT)和包含小曲率隧道效应(SCT)的CVT, 分别计算了200-3000 K温度范围内反应的速率常数kTST、kCVT和kCVT/SCT. 结果表明: (1) 三个氢抽提反应通道的速率常数随温度的增加而增大, 其中变分效应的影响可以忽略, 隧道效应则在低温段影响显著; (2) R1反应是主反应通道, 但随着温度的升高, R2反应的竞争力增大, 而R3反应对总速率常数的影响很小.  相似文献   

8.
H+CH3NO2→H2+CH2NO2反应途径和变分速率常数计算研究   总被引:1,自引:0,他引:1  
采用MP2(FULL)/6-311G**从头算方法,优化了H+CH3NO2——H2+CH2NO2反应的过渡态结构,得出该反应的正逆反应的活化位垒分别是82.73和57.14 kJ·mol-1 .沿IRC分析指出该反应是一个H—H键生成和C—H键断裂的协同反应,而且在反应途径上存在一个引导反应进行的振动模式,这一反应模式引导反应进行的区间在- 0.7~0.2(amu)1/2·a0之间;在 1000~1400 K温度范围内,运用变分过渡态理论(CVT),计算了该反应的速率常数,计算结果与实验相一致.  相似文献   

9.
在G3B3,CCSD(T)/6-311++G(d,p)//B3LYP/6-311++G(d,p)水平上详细研究了CH3SH与基态NO2的微观反应机理.在B3LYP/6-311++G(d,p)水平得到了反应势能面上所有反应物、过渡态和产物的优化构型,通过振动频率分析和内禀反应坐标(IRC)跟踪验证了过渡态与反应物和产物的连接关系.在CCSD(T)/6-311++G(d,p)和G3B3水平计算了各物种的能量,得到了反应势能面.利用经典过渡态理论(TST)与变分过渡态理论(CVT)并结合小曲率隧道效应模型(SCT),分别计算了在200~3000K温度范围内的速率常数kTST,kCVT和kCVT/SCT.研究结果表明,该反应体系共存在5个反应通道,其中N进攻巯基上H原子生成CH3S+HNO2的通道活化势垒较低,为主要反应通道.动力学数据也表明,该通道在200~3000K计算温度范围内占绝对优势,拟合得到的速率常数表达式为k1CVT/SCT=1.93×10-16T0.21exp(-558.2/T)cm3·molecule-1·s-1.  相似文献   

10.
用QC ISD(T)/6-311 G(3DF,3PD)/MP2/6-311G(D,P)方法研究了H原子与CH3NH2的抽氢反应过程。该反应包含两个反应通道:H分别从CH3基团(R1)和NH2(R2)基团上抽氢。R1势垒比R2势垒低3.42kJ/mol,表明R1是主反应通道。在从头算的基础上,用变分过渡态理论(CVT)加小曲率隧道效应(SCT)研究了各反应温度范围为200~4000K内的速率常数,所得结果与实验值符合的很好。动力计算表明,在所研究的温度范围内,变分效应对速率常数的计算影响不大,而在低温范围内,隧道效应起了很重要的作用。  相似文献   

11.
采用CCSD(T)/cc-pVDZ//B3LYP/6-311++G(d,p)双水平计算方法研究了CH3CH2O+HCHO反应的微观反应机理. 结果表明, 标题反应主要存在5个抽氢和3个氢迁移异构化反应通道, 其中抽氢通道R→ IMa(CH3CH2O…CH2O)→TS1→ IM1b→P1(CH3CH2OH+CHO)为优势通道, 其表观活化能为14.65 kJ/mol. 利用变分过渡态理论(CVT)并结合小曲率隧道效应模型计算了主通道R1在275~1000 K温度范围内的速率常数kTST, kCVTkCVT/SCT, 在此温度区间内表观反应速率常数三参数表达式为kCVT/SCT=2.26×10-17 T0.57 exp(-1004/T), 显示具有正温度系数效应.  相似文献   

12.
利用密度泛函理论直接动力学方法研究了反应CH3OCF2CF2OCH3+Cl的微观机理和动力学性质. 在BB1K/6-31+G(d,p)水平上获得了反应的势能面信息, 计算中考虑了反应物CH3OCF2CF2OCH3两个稳定构象(SC1和SC2)的氢提取通道和取代反应通道. 利用改进的正则变分过渡态理论结合小曲率隧道效应(ICVT/SCT)计算了各氢提取通道的速率常数, 进而根据Boltzmann配分函数得到总包反应速率常数(kT)以及每个构象对总反应的贡献. 结果表明296 K温度下计算的kT(ICVT/SCT)值与已有实验值符合得很好. 由于缺乏其他温度速率常数的实验数据, 我们预测了该反应在200-2000 K温度区间内反应速率常数的三参数表达式: kT=0.40×10-14T1.05exp(-206.16/T).  相似文献   

13.
采用密度泛函理论B3LYP方法,在6-311 G(d,p)基组水平上研究了二甲亚砜(DMSO)与XO(X=Cl,Br)自由基反应的微观动力学机理,并利用经过wigner校正的传统过渡态理论计算了标题反应在200~2000 K温度范围内的反应速率常数。研究结果表明,DMSO与XO(X=Cl,Br)自由基反应主要有氧转移和抽氢两种反应机理,氧转移反应的能垒显著低于抽氢反应,且前者为放热反应后者为吸热反应;低温时氧转移反应占绝对优势,298 K时DMSO与XO(X=Cl,Br)两个反应体系的总速率常数分别为2.09×10-15和1.75×10-14cm3.molecu le-1.s-1,氧转移反应分支比均为100%。高温时抽氢反应上升为主通道。2000 K时其总速率常数分别为6.32×10-12和8.41×10-12cm3.molecule-1.s-1,抽氢反应分支比分别为91.8%和79.4%。  相似文献   

14.
HNCO+HCO→NCO+CH2O氢转移反应的从头算及动力学研究   总被引:2,自引:0,他引:2  
在UMP2(Full)/6-311G(d,p)计算水平上,优化了标题反应的反应物、过渡态、产物的几何结构,沿最小能量途径讨论了异氰酸(HNCO)和甲酰自由基(HCO)发生氢转移反应位能面上驻点的结构以及相互作用分子结构变化.指出该反应是一个N-H键断裂和C-H键生成的协同反应.进一步采用UQCISD(T,Full)方法对反应途径上的驻点进行了单点能量校正,得出该反应的计算位垒是91.47 kJ/mol,与实验值108.92 kJ/mol接近在500~2500K实验温度范围内,运用变分过渡态理论(CVT)计算得到的速率常数与实验观测值进行了比较  相似文献   

15.
采用密度泛函理论BB1K/6-31+G(d,p)计算了反应CF3CH2CH3+OH各反应通道上驻点的稳定结构和振动频率, 并分别在BMC-CCSD, MC-QCISD和G3(MP2)水平上进行了单点能校正. 运用变分过渡态理论, 在BMC-CCSD//BB1K, MC-QCISD//BB1K, G3(MP2)//BB1K以及BB1K水平上计算了各反应通道的速率常数, 讨论了-CH2和-CH3基团上H提取通道对总反应的贡献, 并与已有实验和理论结果进行了对比. 计算结果表明, BMC-CCSD水平上的速率常数与实验测量值符合得很好, 进而给出了该水平上反应在200~1000 K温度范围内速率常数k(cm3?molecule-1?s-1)的三参数表达式: k=1.90×10-21T3.21exp(-292.62/T).  相似文献   

16.
CH3S与NO基态反应的机理及动力学   总被引:1,自引:0,他引:1  
在G3(MP2)水平上,通过对CH3S与NO反应势能面(PES)上关键驻点的能量计算,共找到3种中间体、7个过渡态、9种产物通道,并对其反应机理进行了讨论.结果表明此反应主要以两种方式进行一是加成反应,先生成CH3SNO,然后发生单分子解离和异构化反应;二是直接抽提反应,生成CH2S+HNO.用多通道RRKM-TST模型计算了反应随温度和压力变化的速率常数.以295 K的N2作浴气,在200.0~39996.6 Pa压力范围的速率常数为1.6×10-12~1.28×10-11 cm3·molecule-1·s-1.我们计算的速率常数与Balla等的实验值符合较好.反应的速率常数有明显的负温度效应和较强的压力依赖关系.预测常压低温下反应以生成CH3SNO为主,在常压高温1000 K以上以生成CH2S+HNO为主.  相似文献   

17.
采用CBS-QB3方法构建了丙烯酸甲酯(CH_2=CHCOOCH_3)与O_3反应体系的势能剖面并在此基础上利用经典过渡态理论(TST)和Wigner矫正模型计算了标题反应在200K~1200K温度区间内的速率常数kTST/W.研究结果表明,CH_2=CHCOOCH)3与O)3反应首先经过渡态生成一个稳定的五元环中间体,然后按断键位置不同,分别生成产物P1(CH_3OCOCHO+CH_2O_2)和P2(CH)3OCOCHOO+HCHO).此外,速率常数结果显示,在计算温度范围内,标题反应速率常数呈正温度系数效应.294K时,CH_2=CHCOOCH_3与O_3反应速率常数为1.76×10-18cm~3·molecule~(-1)·s~(-1),与所测实验值(0.95±0.07)×10~(-18)cm~3·molecule~(-1)·s~(-1)非常接近.  相似文献   

18.
CH3S←→CH2SH异化反应的理论研究   总被引:1,自引:0,他引:1  
利用密度泛函理论(DFT)和从头算(ab initio)研究了CH3SCH2SH互异化的反应机理.采用HF、 B3LYP、 MP2理论水平和中等基组6-31(d),计算了CH3S、 CH2SH及其过渡态的结构参数、谐振频率、零点能(ZPE)、总能量和相对能量,并利用B3LYP/6-31(d)的方法计算了反应的内禀反应坐标(IRC),给出了分子构型和自旋污染沿反应坐标的变化曲线,以及最小能量曲线(MEP)、绝热能量曲线.此外,利用传统过渡态理论(CTST)研究了该互异化反应的速率常数和平衡常数在200~1000 K的变化.  相似文献   

19.
HCCO与CH(2Π)双自由基反应微观动力学的理论研究   总被引:3,自引:0,他引:3  
用量子化学密度泛函理论的UB3LYP/6-311+G**方法和高级电子相关的UQCISD(T)/6-311+G**方法研究了HCCO与CH(2Π)自由基反应的微观机理. 采用双水平直接动力学方法IVTST-M和正则变分过渡态理论研究了在1 000~2 500 K温度范围内反应的速率常数. 结果表明, HCCO与CH(2Π)双自由基反应过程中存在3个反应通道, 生成产物为C2H2+CO. 通道2为主要反应路径, 通道1也占一定的比例. 在所研究的温度范围内, 速率常数计算的变分效果均较小, 反应为放热反应.  相似文献   

20.
在MPW1PW91/6-311G(d,p)水平上优化了标题反应各驻点物种的几何构型,并在相同水平上通过频率计算和内禀反应坐标(IRC)分析对过渡态结构及连接性进行了验证.采用QCISD(T)/6-311G(d,p)方法对所有驻点及反应路径的部分选择点进行单点能校正,分别构建了CH3SO+HO2反应体系的单、三重态反应势能剖面.研究结果表明,CH3SO+HO2反应体系存在6条反应通道7条路径,优势通道(1)R→3IM→P1(CH3SOH+3O2)发生在三重态势能面上,此通道包含两条路径,其表观活化能分别为12.01和-30.04kJ?mol-1,主路径(2)R→3IM→3TS2→P1(CH3SOH+3O2)是一个无势垒氢迁移过程.利用经典过渡态理论(TST)与变分过渡态理论(CVT)并结合小曲率隧道效应模型(SCT),分别计算了主路径(2)在200~2500K温度范围内的速率常数kTST,kCVT和kCVT/SCT,在此温度区间内的表观反应速率常数三参数表达式为kCVT/SCT=4.08×10-24T3.13exp(8012.2/T)cm3imolecule-1is-1,具有负温度系数效应.速率常数计算结果显示,变分效应在计算温度段内影响较小,而量子力学隧道效应在低温段有显著影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号