首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stabilisation of electrochemically deposited Prussian blue (PB) films on glassy carbon (GC) electrodes has been investigated and an enhancement in the stability of the PB films is reported if the electrodes are treated with tetrabutylammonium toluene-4-sulfonate (TTS) in the electrochemical activation step following the electrodeposition. A multi-enzyme PB based biosensor for sucrose detection was made in order to demonstrate that PB films can be coupled with an oxidase system. A tri-enzyme system, comprising glucose oxidase, mutarotase and invertase, was crosslinked with glutaraldehyde and bovine albumin serum on the PB modified glassy carbon electrode. The deposited PB operated as an electrocatalyst for electrochemical reduction of hydrogen peroxide, the final product of the enzyme reaction sequence. The electrochemical response was studied using flow injection analysis for the determination of sucrose, glucose and H2O2. The optimal concentrations of the immobilisation mixture was standardised as 8 U of glucose oxidase, 8 U of mutarotase, 16 U of invertase, 0.5% glutaraldehyde (0.025 μl) and 0.5% BSA (0.025 mg) in a final volume of 5 μl applied at the electrode surface (0.066 cm2). The biosensor exhibited a linear response for sucrose (4-800 μM), glucose (2-800 μM) and H2O2 (1-800 μM) and the detection limit was 4.5, 1.5 and 0.5 μM for sucrose, glucose and H2O2, respectively. The sample throughput was ca. 60 samples h−1. An increase in the operational and storage stability of the sucrose biosensor was also noted when the PB modified electrodes were conditioned in phosphate buffer containing 0.05 M TTS during the preparation of the PB films.  相似文献   

2.
Polyelectrolyte multilayers (PEMs) are now widely used for bioanalytical applications. In this work, a bilayer of poly(diallydimethylammonium chloride) (PDDA) and poly(sodium 4-styrenesulfonate) (PSS) is consecutively adsorbed on 3-mercapto-1-propanesulfonic acid modified Au electrode surfaces, forming stable, ultrathin multilayer films. Subsequently, Prussian blue nanoparticles protected by PDDA (denoted as P-PB) and negatively charged glucose oxidase (GOx) are consecutively adsorbed onto the PSS-terminated bilayer. The growth of each of the P-PB/GOx bilayers is followed quantitatively using UV-visible absorption spectroscopy and the electrochemical method. The P-PB nanoparticles can catalyze the electroreduction of hydrogen peroxide formed from enzymatic reaction at lower potential and inhibit the responses of interferents, such as ascorbic acid (AA) and uric acid (UA). Performance of the multilayer films can be tailored by controlling the number of bilayers. Under optimal conditions, a linear range of 0.10 to 11.0 mM and a detection limit of 10 microM were achieved. The glucose biosensor has good stability and reproducibility.  相似文献   

3.
Thin films of iron-filled carbon nanotubes prepared through the liquid/liquid interfacial method were modified with a mixture of hexacyanometallates (HCMs) Prussian blue and ruthenium purple. Two different approaches were used in order to obtain both materials in the composites, based on a direct reaction starting from a mixture of both precursors or a step-by-step deposition of each compound. The modified films were characterized by cyclic voltammetry, Raman spectroscopy, X-ray diffraction, scanning electron microscopy, and UV-Vis spectroscopy, confirming the formation of a mixture of HCMs in both methods of synthesis. Stability studies were evaluated in different supporting electrolytes, and composites presented good performances due to carbon nanotube stabilization. Electrochromic properties were also evaluated for selected composites, showing high electrochromic efficiency and stability.
Graphical abstract ?
  相似文献   

4.
It is shown that the gold surface is catalytically deactivated and smoothened upon removal of the Prussian blue (PB)–gold nanocomposite formed on the gold surface. Atomic force microscopy proves surface smoothening after PB removal. The voltammetric responses of Ru(NH3)6Cl3 on the smoothened surface remain unaffected, but the reactions that involve multistep and inner-sphere electron transfer are affected on the smoothened surface as exemplified by hydroquinone, ferrous oxalate redox reactions, and oxygen reduction. These effects are attributed to catalytic deactivation as a consequence of removal of the active sites.
Figure
It is shown that the gold surface is catalytically deactivated and smoothened upon removal of the Prussian blue (PB)–gold nanocomposite formed on the gold surface. Atomic force microscopy proves surface smoothening after PB removal. The voltammetric responses of Ru(NH3)6.Cl3 on smoothened surface remain unaffected, but the reactions that involve multistep and inner-sphere electron transfer are affected on the smoothened surface as exemplified by hydroquinone, ferrous oxalate redox reactions, and oxygen reduction. These effects are attributed to catalytic deactivation as a consequence of removal of the active sites. Graphical abstract shows the Au surface smoothening as a consequence of Prussian blue-gold nanocomposite (Au-PB) formation and removal  相似文献   

5.
We have prepared a sol–gel that incorporates Prussian Blue (PB) as a redox mediator. It is shown that the PB in the pores of the sol–gel retains its electrochemical activity and is protected from degradation at acidic and neutral pH values. TEM and EDX studies revealed the PB nanoparticles to possess a cubic crystal structure and to be well entrapped and uniformly dispersed in the pores of the matrix. The electrocatalytic activity of the materials toward hydrogen peroxide (H2O2) was studied by cyclic voltammetry and amperometry. The modified electrode displays good sensitivity for the electrocatalytic reduction of H2O2 both in acidic (pH 1.4) and neutral media. The sensor has a dynamic range from 3 to 210 μM of H2O2, and the detection limit is 0.6 μM (at an SNR of 3).
Figure
TEM micrograph of the Sol-gel–PB composite showing a large quantity of crystalline cubic nanoparticles uniformly distributed in the sol-gel matrix and electrocatalytic response of the Sol-gel–PB electrode for hydrogen peroxide.  相似文献   

6.
Science China Chemistry - A carbon paste modified sensor based on a novel composite of zinc oxide nanoparticles deposited on reduced graphene oxide (ZnO-rGrO) and Prussian blue (PB) was drop-cast...  相似文献   

7.
New multiwalled carbon nanotube/silica supported cobalt-palladium bimetallic nanocatalysts (MWNT@silica/Co–Pd NPs) were prepared by a simple one step gamma irradiation method. The method involves the in-situ surface modification of MWNT with silica (MWNT@silica) and simultaneous formation of Co–Pd bimetallic NPs using gamma irradiation. The bimetallic NPs were stabilized by silica particles formed over the surface of MWNT. Extensive characterization studies have been performed on structural, morphological, and electrochemical, aspects of MWNT@silica/Co–Pd NPs. MWNT@silica/Co–Pd NPs were characterized by field emission scanning microscopy (FESEM), UV–visible spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Raman spectroscopy. The influence of irradiation dosage levels on the stabilizing effect of silica particles has been studied. The electrolytic activities of the MWNT@silica/Co–Pd NPs were investigated by cyclic voltammetry.  相似文献   

8.
A novel modified electrode was fabricated by electropolymerization of acid chrome blue K at a multi-walled carbon nanotubes modified glassy carbon electrode. The electrode developed was used for simultaneous determination of the isomers of dihydroxybenzene in environmental samples using first order linear sweep derivative voltammetry with background subtraction. A linear relationship between peak current and concentration of hydroquinone, catechol and resorcinol was obtained in the range of 1 × 10−6–1 × 10−4 mol L−1, and the detection limits were estimated to be 1 × 10−7, 1 × 10−7 and 9 × 10−8 mol L−1, respectively. The constructed electrode showed excellent reproducibility and stability. Real water samples were analyzed and satisfactory results were obtained. This method provides a new way of constructing electrodes for environmental and biological analysis.  相似文献   

9.
10.
《Polyhedron》2007,26(9-11):2291-2298
The reaction of [NEt4]3[Cr(CN)6] with titanium(III) p-toluenesulfonate at a pH of 2 affords a gray solid whose metal content and spectroscopic and magnetic properties are fully consistent with it being a Prussian blue material of stoichiometry “TiIII[CrIII(CN)6] · H2O”. The carbon, nitrogen, and hydrogen content, however, are not consistent with this stoichiometry, and further investigation showed that the gray material has a powder X-ray diffraction profile, infrared spectrum, and magnetic properties very similar to those of the “all-chromium” Prussian blue CrII[CrIII(CN)6]0.67 · 6H2O. All data, including the C, H, and N weight percentages, are consistent with the conclusion that the material isolated is a nanocomposite of CrII[CrIII(CN)6]0.67 · xH2O and TiO2 in the ratio of 1–1.6. These results suggest that TiIII reduces some of the [CrIII(CN)6]3− ions to generate TiIV and CrII; the former hydrolyzes to amorphous TiO2 · 2H2O, the latter loses its bound CN ligands and reacts with unreacted [CrIII(CN)6]3− ions to generate the crystalline all-chromium PB species. The electrochemical potentials suggest that the [CrIII(CN)6]3− ion should not be reduced by TiIII; evidently, this unfavorable reaction is driven by the insolubility of the reaction products. The results constitute a cautionary tale in two respects: first, that the characterization of Prussian blue materials must be conducted with care and, second, that the insolubility of Prussian blue analogues can sometimes drive reactions that in solution are thermodynamically unfavorable.  相似文献   

11.
The present study reports the development, validation and application of a new green liquid chromatographic method for the determination of glutathione (GSH) in vegetable samples. In this work we introduce—for the first time—ethyl propiolate (EP) as an advantageous post-column derivatization reagent for thiolic compounds. GSH (tR = 6.60 min) and N-acetylcysteine (NAC, internal standard) (tR = 11.80 min) were separated efficiently from matrix endogenous compounds by using a 100% aqueous mobile phase (0.1%, v/v CH3COOH in 1 mmol L−1 EDTA, QV = 0.5 mL min−1) and a Prevail® reversed phase column that offers the advantage of stable packing material in aqueous mobile phases. The parameters of the post-column reaction (pH, amount concentration of the reagent, flow rates, length of the reaction coil and temperature) were studied. The linear determination range for GSH was 1–200 μmol L−1 and the LOD was 0.1 μmol L−1 (S/N = 3). Total endogenous GSH was determined in broccoli, potato, asparagus and Brussels sprouts using the standards addition approach. The accuracy was evaluated by both recovery experiments (R = 91–110%) and comparison to an o-phthalaldehyde/glycine corroborative post-column derivatization fluorimetric method.  相似文献   

12.
Carbon nanotube-supported gold nanoparticles of different sizes (diameter of 3 or 20 nm) were evaluated as catalysts in four selected organic transformations. The nanohybrids were shown to efficiently catalyze the investigated reactions, regardless of the size of the supported gold nanoparticles. However, some differences were observed as regards turnover frequency values although size effect turned out to be less significant when only gold surface atoms were considered.  相似文献   

13.
Cholesterol esterase and cholesterol oxidase were immobilized on octyl-agarose gel, activated with cyanogen bromide and placed in a reactor. The sensor system for total cholesterol was assembled with the immobilized enzyme reactor, a hydrogen peroxide electrode and a peristaltic pump. Characteristics of the sensor system were investigated by using cholesterol palmitate as a standard substrate. A linear relationship was obtained between peak current and cholesterol palmitate concentration below 1000 mg dl-1 (10.3 mM). A 10-μl sample could be assayed in 5 min. Total cholesterol in human serum was determined in the range 100–400 mg dl-1. The standard deviation for the determination of 50 samples of 300 mg dl-1 was 6 mg dl-1 (2%). The system was used for 300 assays without loss of enzymatic activity. The correlation coefficient was 0.94 for 27 samples of human sera analyzed by the system proposed and by the conventional chemical method.  相似文献   

14.
The oxidation of acetaminophen was studied at a glassy carbon electrode modified with multi-walled carbon nanotubes and a graphite paste. Cyclic voltammety, differential pulse voltammetry and square wave voltammetry at various pH values, scan rates, and the effect of the ratio of nanotubes to graphite were investigated in order to optimize the parameters for the determination of acetaminophen. Square wave voltammetry is the most appropriate technique in giving a characteristic peak at 0.52 V at pH 5. The porous nanostructure of the electrode improves the surface area which results in an increase in the peak current. The voltammetric response is linear in the range between 75 and 2000 ng.mL?1, with standard deviations between 0.25 and 7.8%, and a limit of detection of 25 ng.mL?1. The method has been successfully applied to the analysis of acetaminophen in tablets and biological fluids.  相似文献   

15.
A method for individual and simultaneous covalent immobilization of cholesterol oxidase and peroxidase to copolymer of acrylonitrile with acrylamide is described. The effect of immobilization on the catalytic properties of the covalently bound enzymes was studied. The immobilized enzymes showed no change in pH optima and an increase in temperature optima, activation energy, and K m , compared to data received from experiments with soluble enzymes. A small glass column packed with immobilized multienzyme complex was used to develop a method for manual determination of cholesterol in foodstuffs (e.g., in mayonnaise “Olinease”). The method was characterized by high analytical precision (coefficient of variation = 2.67%). The results show high correlation with those obtained by the Kageyama method (r=0.986). The method is economical (the enzyme-carrier conjugate may be used more than 300 times), precise, easy to perform, and less time-consuming than the manual methods utilizing soluble enzymes. The established manual method can be proposed for cholesterol determination in foodstuffs.  相似文献   

16.
A new and simple-to-prepare hypoxanthine biosensor has been developed using xanthine oxidase (XOD) immobilised on carbon electrode surfaces. XOD was immobilised by glutaraldehyde cross-linking on carbon film (CF) electrodes and on carbon nanotube (CNT) modified CF (CNT/CF). A comparison of the performance of the two configurations was carried out by the current response using amperometry at fixed potential; the best characteristics being exhibited by XOD/CNT/CF modified electrodes. The effects of electrolyte pH and applied potential were evaluated, and a proposal is made for the enzyme mechanism of action involving competition between regeneration of flavin adenine dinucleotide and reduction of hydrogen peroxide. Under optimised conditions, the determination of hypoxanthine was carried out at ?0.2 V vs. a saturated calomel electrode (SCE) with a detection limit of 0.75 μM on electrodes with CNT and at ?0.3 V vs. SCE with a detection limit of 0.77 μM on electrodes without CNT. The applicability of the biosensor was verified by performing an interference study, reproducibility and stability were investigated, and hypoxanthine was successfully determined in sardine and shrimp samples.  相似文献   

17.
A multi-wall carbon nanotube (MWNT) film-modified electrode is described for the determination of malachite green (MG). The electrochemical profile of MG was examined using cyclic voltammetry (CV) and differential pulse voltammetry (DPV), suggesting that the MWNT film facilitates the electron transfer of MG in terms of a potential shift and then significantly enhances the oxidation peak current of MG. The experimental parameters, such as supporting electrolyte, thickness of MWNT film, scan rate and accumulation time, were optimized. Consequently, a sensitive and convenient electrochemical method is proposed for the determination of MG. The oxidation peak current is proportional to the concentration of MG over the range from 5.0 × 10−8 to 8.0 × 10−6 mol L−1 obeying the following equation: ip = 0.09 + 1.19 × 107 C (r = 0.995, ip in μA, C in mol L−1). The detection limit is 6.0 × 10−9 mol L−1 (signal to noise = 3) after 5 min of accumulation. Moreover, this method possesses good reproducibility (RSD is 5.6%, n = 8) as well as long-term stability. Finally, the new method was employed to determine MG in fish samples. Correspondence: W. Huang, Department of Chemistry, Hubei Institute for Nationalities, Enshi 445000, P.R. China  相似文献   

18.
In this work, a multi-wall carbon nanotube (MWNT) film-modified glassy carbon electrode (GCE) was constructed for the determination of 8-hydroxydesoxyguanosine (8-OHdG). The electrochemical behaviors of 8-OHdG were examined using cyclic voltammetry (CV) and linear sweep voltammetry (LSV), suggesting that MWNT film facilitates the electron transfer of 8-OHdG and then significantly enhances the oxidation peak current of 8-OHdG. Finally, a sensitive and simple electrochemical method with a good linear relationship in the range of 8.0 × 10−8 ∼ 5.0 × 10−6 mol 1−1, was developed for the determination of 8-OHdG. The detection limit is 9.0 × 10−9 mol 1−1 for 6-min accumulation. This newly-proposed method was successfully used to detect 8-OHdG in urine samples. Published in Russian in Elektrokhimiya, 2008, Vol. 44, No. 3, pp. 351–356. The text was submitted by the authors in English.  相似文献   

19.
We report on a novel glucose biosensor based on the immobilization of glucose oxidase (GOx) on a Prussian blue modified nanoporous gold surface. The amperometric glucose biosensor fabricated in this study exhibits a fast response and the very low detection limit of 2.5 μM glucose. The sensitivity of the biosensor was found to be very high, 177 μA/mM; the apparent Michaelis–Menten constant is calculated to be 2.1 mM. In addition, the biosensor has good reproducibility and remains stable over 60 days. The anti-interference ability of the biosensor was also assessed, showing little interference from possible interferents such as ascorbic acid (AA), acetaminophen (AP) and uric acid (UA).  相似文献   

20.
Summary Peroxodisulphate (persulphate) may be determined by direct current voltammetry (DCV) using carbon paste electrodes chemically modified with Prussian Blue, iron(III)-hexacyanoruthenate(II) or iron(III)-hexacyano-osmate(II). The determination is based on the exploitation of catalytic currents from the reduction of the modifiers. Best results are obtained for iron(III)-hexacyanoosmate(II) yielding a detection limit of 1 g O 2 2– /ml (as persulphate) when using HCl (10–2 mol/l) as supporting electrolyte and measuring in the DCV-mode. Electrodes doubly-modified with the osmium compound and a liquid anion-exchanger (Amberlite LA2) allow determinations of persulphate after preconcentration under open circuit conditions, in the presence of hydrogen peroxide and perborate, with a detection limit of 20 ng O 2 2– /ml (as persulphate).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号