首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The introduction of organic ligands into metal–organic frameworks (MOFs) with a specific topology and that cannot be attained by direct synthesis is a big challenge. To meet this challenge, different ligand exchange/incorporation methods have been employed. Here, a new method, called ultrasonic-assisted linker exchange (USALE), has been developed to overcome the above-mentioned problems. USALE is a novel method for ligand exchange based on the use of ultrasonic waves. The temperature and pressure caused by the USALE method in microscopic zones are so intense that the linker exchange process is much faster than with other methods. In addition to saving time during synthesis, the use of the USALE method leads to a higher surface area and pore volume compared with other methods such as solvent-assisted linker exchange (SALE). In this way, improved gas adsorption capacity has been achieved for daughter frameworks synthesized by the USALE method. By using the USALE method, we have transformed a nonporous and easy-to-synthesize TMU framework ([Zn(OBA)(BPDB)0.5]n ⋅ 2DMF (TMU-4), in which H2OBA=4,4′-oxybis(benzoic acid) and BPDB=1,4-di(4-pyridyl)-2,3-diaza-1,3-butadiene) into another porous framework ([Zn(OBA)(H2DPT)0.5]n ⋅ DMF (TMU-34), in which H2DPT=3,6-di(4-pyridyl)-1,4-dihydro-1,2,4,5-tetrazine) that otherwise requires a relatively long time to synthesize. In addition to reducing the synthesis time for TMU-34 (in comparison with both direct sonochemical synthesis and the indirect SALE method), the data obtained revealed that the daughter TMU-34 framework synthesized by the USALE method has a higher surface area and accessible pore volume than TMU-34 frameworks synthesized by SALE and direct methods. The application of SALE-TMU-34 and USALE-TMU-34 in a catalytic Henry condensation reaction and Congo Red adsorption experiments showed that the higher porosity of USALE-TMU-34 leads to a higher turn-over frequency and saturation capacity compared with SALE-TMU-34.  相似文献   

2.
To overcome the challenge of developing a multipurpose adsorbent for effective removal of toxic and carcinogenic PbII ions from aqueous solutions, a made-for-purpose functional group (N1,N2-di(pyridine-4-yl)oxalamide) was rationally designed and incorporated into the cavities of a Zn metal–organic framework (MOF), namely, TMU-56. Large enough pore size along with high densities of strong metal chelating sites lead not only to the highest uptake capacity for PbII ions, but also the fastest removal rate that has ever been reported for functionalized MOFs, occurring in just 20 s. Moreover, high concentrations of lead ions favor the ion exchange reaction, resulting in a high degree of metal exchange. In addition, TMU-56 can be a practical adsorbent because of its notable performance in the simultaneous removal of several toxic and carcinogenic heavy metals from wastewater, which has rare precedence.  相似文献   

3.
Thin films of a three-dimensional porous Zn(II)-based metal–organic framework, [Zn2(NH2-BDC)2(4-bpdb)] · 3DMF (TMU-17-NH2), containing azine-functionalized pores, were deposited on surfaces of silk fiber via a stepwise manner. The effect of sequential dipping steps in growth of TMU-17-NH2 has been studied. These systems depicted a decrease in the size accompanying a decrease in the sequential dipping steps. The TMU-17-NH2 has been used as matrices for the adsorption and in vitro guest delivery of methyldopa (MD).  相似文献   

4.
张晓琼  汪彤  王培怡  姚伟  丁明玉 《色谱》2016,34(12):1176-1185
金属有机骨架(MOFs)是一类由无机金属离子与有机配体自组装形成的新型有机-无机杂化多孔材料,因具有比表面积超高、结构多样、热稳定性良好、孔道尺寸和性质可调等优势,在分离领域表现出重要的应用价值。然而,采用传统方法制备的MOFs多为粒径在微米或亚微米尺度的晶体,且颗粒形貌不规则,因此限制了MOFs在样品前处理和色谱固定相等领域的应用和发展。构建基于MOFs的复合材料是弥补MOFs应用缺陷的一项有效措施,有望在保留MOFs优越的分离特性的同时,引入基体材料的特定性能。该文简要综述了近年来MOFs及其复合材料在吸附、样品前处理和色谱固定相等分离领域中的应用进展,并对MOFs在分离科学中的应用前景做出展望。  相似文献   

5.
《中国化学快报》2021,32(10):2975-2984
Metal-organic frameworks (MOFs) are currently popular porous materials with research and application value in various fields. Aiming at the application of MOFs in photocatalysis, this paper mainly reviews the main synthesis methods of MOFs and the latest research progress of MOFs-based photocatalysts to degrade organic pollutants in water, such as organic dyes, pharmaceuticals and personal care products, and other organic pollutants. The main characteristics of different synthesis methods of MOFs, the main design strategies of MOFs-based photocatalysts, and the excellent performance of photocatalytic degradation of organic pollutants are summarized. At the end of this paper, the practical application of MOFs, the current limitations of MOFs, the synthesis methods of MOFs, and the future development trend of MOFs photocatalysts are explained.  相似文献   

6.
金属有机框架材料是由金属离子节点和有机配体通过配位键连接形成的具有序多孔骨架的材料, 因其具有比表面积大、 孔隙可调及表面性质可控等优点而备受关注. 通过对有机配体和金属离子进行选择及对金属有机框架材料进行后修饰处理, 可实现对金属有机框架材料表面性质的调控, 以提升其选择性吸附及特异性识别等性能, 进而拓展其在分离分析等领域的应用. 本文从金属有机框架材料的表面性质调控出发, 介绍了其表面性质与分离分析性能的关系, 总结了近年来该领域的代表性工作, 并展望了金属有机框架材料在分离分析领域的应用前景.  相似文献   

7.
Metal-organic frameworks (MOFs) are thought to be a set of promising hydrogen storage materials; however, little is known about the interactions between hydrogen molecules and pore walls as well as the diffusivities of hydrogen in MOFs. In this work, we performed a systematic molecular simulation study on the adsorption and diffusion of hydrogen in MOFs to provide insight into molecular-level details of the underlying mechanisms. This work shows that metal-oxygen clusters are preferential adsorption sites for hydrogen in MOFs, and the effect of the organic linkers becomes evident with increasing pressure. The hydrogen storage capacity of MOFs is similar to carbon nanotubes, which is higher than zeolites. Diffusion of hydrogen in MOFs is an activated process that is similar to diffusion in zeolites. The information derived in this work is useful to guide the future rational design and synthesis of tailored MOF materials with improved hydrogen adsorption capability.  相似文献   

8.
Metal organic frameworks(MOFs) are a kind of promising materials in many applications,while the fast and controllable synthesis of MOFs is still challenging.Here,taking HKUST-1 as illustration,a microplasma electrochemistry(MIPEC) strategy was developed to accelerate the synthesis process of MOFs with micro-plasma acting as cathode.Treating the HKUST-1 precursor solution with micro-plasma cathode could not only transfer the electrons into the solution leading to the deprotonation effect,but also generate radical species to trigger and accelerate the nucleation and growth of MOFs at the plasmaliquid interface.Thus,uniform and nanosize MOFs could be prepared within minutes.The obtained MOFs show similar excellent uranium adsorption properties compared with those obtained by other method,with a highly adsorption capability of uranium with 550 mg/g in minutes.The novel MIPEC strategy developed in this work provides an alternative for controllable synthesis of MOFs,and especially has potential application in accelerating traditional organic synthesis.  相似文献   

9.
Mixed‐metal metal–organic frameworks (MM‐MOFs) can be considered to be those MOFs having two different metals anywhere in the structure. Herein we summarize the various strategies for the preparation of MM‐MOFs and some of their applications in adsorption, gas separation, and catalysis. It is shown that compared to homometallic MOFs, MM‐MOFs bring about the opportunity to take advantage of the complexity and the synergism derived from the presence of different metal ions in the structure of MOFs. This is reflected in a superior performance and even stability of MM‐MOFs respect to related single‐metal MOFs. Emphasis is made on the use of MM‐MOFs as catalysts for tandem reactions.  相似文献   

10.
Detection of trace amounts of explosive materials is significantly important for security concerns and pollution control. Four multicomponent metal–organic frameworks ( MOFs‐12 , 13 , 23 , and 123 ) have been synthesized by employing ligands embedded with fluorescent tags. The multicomponent assembly of the ligands was utilized to acquire a diverse electronic behavior of the MOFs and the fluorescent tags were strategically chosen to enhance the electron density in the MOFs. The phase purity of the MOFs was established by PXRD, NMR spectroscopy, and finally by single‐crystal XRD. Single‐crystal structures of the MOFs‐12 and 13 showed the formation of three‐dimensional porous networks with the aromatic tags projecting inwardly into the pores. These electron‐rich MOFs were utilized for detection of explosive nitroaromatic compounds (NACs) through fluorescence quenching with high selectivity and sensitivity. The rate of fluorescence quenching for all the MOFs follows the order of electron deficiency of the NACs. We also showed the detection of picric acid (PA) by luminescent MOFs is not always reliable and can be misleading. This attracts our attention to explore these MOFs for sensing picryl chloride (PC), which is as explosive as picric acid and used widely to prepare more stable explosives like 2,4,6‐trinitroaniline from PA. Moreover, the recyclability and sensitivity studies indicated that these MOFs can be reused several times with parts per billion (ppb) levels of sensitivity towards PC and 2,4,6‐trinitrotoluene (TNT).  相似文献   

11.
为了获得高效率的染料敏化太阳能电池,其光阳极应该具有大的比表面积,以吸附足量的染料,获得很强的光捕获能力.从这个角度而言,将具有很大比表面积的金属有机框架材料引入到染料敏化太阳能电池的体系中,无疑是一种有益的探索.本文简介了金属有机框架材料在光伏领域的应用,并重点介绍了我们课题组在利用金属有机框架材料方面进行的一些探索,包括光阳极薄膜的处理、利用金属有机框架材料作为前驱体制备光阳极材料和光散射层.最后,本文对金属有机框架材料应用于染料敏化太阳能电池中的局限性及前景做了简要的展望.  相似文献   

12.
Metal-organic frameworks (MOFs) are supramolecular nanomaterials, in which metal ions or clusters are connected by organic ligands to form crystalline lattices with highly ordered periodic porous network structure. MOFs have been widely applied in various fields, such as catalyst, sample preparation, and sensing. In recent years, MOFs based surface enhanced Raman scattering (SERS) substrates have attracted much attention since MOFs can largely improve the performance of metallic SERS substrates toward target enrichment and signal enhancement. MOFs have been exploited in SERS analysis to tackle some challenges that bare metal substrates cannot achieve. Combination of MOFs and SERS improved the sensitivity of traditional SERS analysis and extended the application scope of SERS. With the increasing exploration of MOFs based SERS substrates, there is a great demand to review the advances in these researches. Herein, this review concentrated on summarizing the preparation and applications of MOFs based SERS substrates. Representative researches were discussed to better understand the property of MOFs based SERS substrates. The advantages of MOFs based SERS substrates were highlighted, as well as their limitations. In addition, the challenges, opportunities, and future trends in MOFs based SERS analysis were tentatively discussed.  相似文献   

13.
Metal–organic frameworks (MOFs) have been proven to be outstanding adsorbent materials which possess excellent pollutant removal performances in wastewater treatment. However, MOFs consumption, loss, or blockage in reactor pipelines as well as the long and complicated recycling process severely limit their practical applications. Therefore, construction of novel MOFs composites with extremely high ease-of-use property has become a research hotspot, such as two-dimensional (2D) MOFs fibrous membranes. In this review, the exploitation of MOFs nanofibrous membranes via electrospinning and their applications in wastewater treatment are summarized. The MOFs nanofibers (NFs) architectures are established systematically by five routes: (1) direct electrospinning of MOFs-polymer; (2) induced growth of MOFs on electrospun NFs containing seeds; (3) growth of MOFs on electrospun organic NFs’ (4) growth of MOFs on electrospun inorganic NFs; and (5) simultaneous electrospinning and electrospraying. Furthermore, the applications of different types of MOFs nanofibrous membranes and their derivatives in water treatment and purification are discussed, including oil-water separation, the removal of heavy metal ions, organic dyes, personal care products, non-steroidal anti-inflammatory drugs (NSAIDs) and so on. The adsorption properties and mechanisms of electrospun MOFs nanofibrous membranes towards various environmental pollutants are discussed. Finally, the challenges of electrospun MOFs NFs, the limitations of their applications, and future development trends are prospected.  相似文献   

14.
Metal‐organic frameworks (MOFs) have been applied in various fields because of their fascinating structures and excellent properties. MOFs can serve as stationary phases in gas chromatography (GC), which has led to exceptional improvements of performance. Here, we summarize the application of MOFs in GC based on the classification of analytes. The advantages and separation mechanism of MOFs as stationary phases in GC are discussed in combination with the characteristics and structures of MOFs. The limitations are also summarized in this review, which can provide prospects on further research for the applications of MOFs.  相似文献   

15.
《中国化学快报》2023,34(7):107986
Metal-organic frameworks (MOFs), a class of hybrid materials, consist of organic linkers and bridging metal ions or clusters. Their tunable pore sizes, large surface area, good biocompatibility, structural variability in combination with materials and chemicals, and osteogenic effects provide potential approaches for bone tissue engineering and bone diseases. And there are more and more research on MOFs in the field of osteogenesis in recent years. This review presents an overall summary of the application in the bone tissue engineering and bone diseases of MOFs and their composites, starting with the synthesis of MOFs, which discusses the advantages and disadvantages of different syntheses. Then, the biological functions of MOFs are discussed, which are the basics of MOFs applied in the organism. Importantly, mechanisms and abundant applications of MOFs are detailed in the bone tissue engineering and bone diseases. Finally, some prospects of MOFs are discussed, for instance, exploring whether MOFs can be used to treat other bone diseases.  相似文献   

16.
金属有机框架(MOFs)是由金属离子或金属簇与有机配体通过配位作用自组装形成的一类新型多孔材料. MOFs具有独特的拓扑结构、丰富的孔隙结构、可调的孔道尺寸、巨大的比表面积以及灵活的表面修饰等特征,是色谱分离领域颇受关注的一类新型固定相. 综述了近几年MOFs材料作为固定相在气相色谱、液相色谱及手性拆分等领域应用的研究进展,展现MOFs材料在色谱分离领域的优异性能和应用潜力,并对MOFs材料在色谱固定相领域今后的发展进行了展望.  相似文献   

17.
金属有机框架材料(MOFs)在绿色能源气体储存、 二氧化碳捕获、 化学分离、 化学传感和多相催化等领域有着广泛的应用前景, 与其分子结构、 动力学行为以及与客体分子的相互作用密切相关. 固体核磁共振(NMR)能提供原子水平的结构距离信息, 能从多个时间尺度反映分子动力学行为, 能通过极化转移揭示主客体相互作用. 本文综述了近年来先进的固体核磁共振方法在研究MOFs的结构、 动力学行为以及主客体相互作用等方面的研究进展. 多核、 多维固体NMR可给出MOFs材料的金属中心以及有机配体的局部配位状态, 变温固体NMR可以反映MOFs的分子柔性以及有机配体在不同温度下的运动模式及速率. 固体NMR还可用来研究MOFs与吸附客体分子(如甲烷、 二氧化碳等)之间的相互作用模式. 通过固体NMR技术获得的结构信息有助于人们理解MOFs材料的构效关系, 并为合理设计新型的MOFs材料提供依据.  相似文献   

18.
Sorptive pre-concentration of pesticide residues in food and environmental samples is increasingly gaining momentum. This can be attributed to fact that most sorptive extraction techniques are solvent-free as well as the availability of emerging sorbents with relatively high adsorption capacities. Metal organic frameworks (MOFs) are among the emerging sorbents that have captured the interests of many researchers during pesticide analysis. There are many types of MOFs that have been used by researchers to pre-concentrate pesticides in food and environmental samples. Some researchers have successfully used MIL-based MOFs during sorptive extraction of pesticides in complex matrices. This review gives a detailed discussion of their application during pesticide pre-concentration. Other researchers have used the ZIF series of MOFs for the sorptive pre-concentration of pesticides in food and environmental samples. The utilisation of the ZIF series of MOFs during pesticide pre-concentration is well-articulated in this review. The review also devoted to the application of UiO and HKUST series of MOFs during the pre-concentration of pesticides in food and environmental samples. In addition, the challenges associated with the use of MOFs during sorptive pre-concentration of pesticides are also discussed in this review.  相似文献   

19.
This perspective article is aimed at providing a comparison of similarities and dissimilarities between the catalytic properties of zeolites and metal organic frameworks (MOFs). In the first part of the paper, we comment the general characteristics of MOFs with relevance to catalysis, making emphasis of how the properties of MOFs can serve to compliment those of zeolites as catalysts. The lower chemical and thermal stability of MOFs compared to zeolites is commented and correlated to the requirements for some liquid-phase reactions conducted under mild conditions. In the second part, we discuss the behaviour of zeolites and MOFs for four types of general organic reactions (acid catalysed, base catalysed, oxidation and hydrogenations). Particular attention is paid to provide critical comments on how MOFs could be adapted by design or can be modified by post-synthetic treatments to give well performing catalysts.  相似文献   

20.
李志敏  乔宇  车广波 《化学通报》2018,81(4):297-302,348
氨基功能化金属有机骨架材料(Metal-organic frameworks,MOFs)是一种非常具有吸引力的功能化MOFs,其兼具MOFs的高比表面积、孔道易调控及氨基的可后处理修饰的性能。通过简单的化学反应可实现功能基团的转化,从而制得新型的功能化MOFs,在气体存储、药物载体、选择性吸附气体小分子和催化等领域具有潜在的应用价值,因此开发氨基功能化的MOFs备受人们关注。本文综述了近年来氨基功能化MOFs在催化和吸附领域的研究进展,包括氨基功能化MOFs的制备方法、影响因素以及在环境方面的应用,并对今后的发展前景进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号