首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The charging behavior of the gibbsite gamma-Al(OH)3 basal (001) surface in aqueous solution is important for correctly modeling the overall charging properties of gibbsite particles which controls surface phenomena such as adsorption and crystal growth. However, the question of whether the hydroxyl groups on the basal plane are proton active has been raised recently both from experimental and theoretical points of view. Using gibbsite crystals prepared from industrial Bayer process, the surface potentials of cleaved (001) surfaces were calculated from forces measured by the colloidal probe technique in 1 mM NaCl solution with differing pH. It was surprisingly found that the basal plane is proton active in pH less than 7 and protonation seems to level off at about pH 5. The potential-pH data was accurately fitted with a single pKa surface protonation model with pK(a) = 5.9 +/- 0.2.  相似文献   

2.
采用电势滴定(potentiometric titration,PT)法测定了Zn-Al类水滑石(HTlc)的零净电荷点(pHPZNC);利用电势滴定数据直接计算得到Zn-Al HTlc的内禀电离平衡常数(pKa2int)和质子吸附自由能(G0ads,2);研究了结构电荷密度(σp)对pKa2int 和G0ads,2的影响.结果表明,随σp增加, pKa2int 和G0ads,2数值均降低,说明σp越大,带正电荷的HTlc与H+结合力越低,HTlc去质子能力越强,H+游离出HTlc表面的趋势越大.研究发现,HTlc的pKa2int与pHPZNC之间符合关系式: pKa2int =1.372pHPZNC-3.328.  相似文献   

3.
Surface-charging behavior of Zn-Cr layered double hydroxide   总被引:1,自引:0,他引:1  
A Zn-Cr layered double hydroxide (LDH) having the formula Zn(2)Cr(OH)(6)Cl(0.7)(CO(3))(0.15)2.1H(2)O was synthesized and characterized by powder X-ray diffraction, infrared spectroscopy, acid-base potentiometric titration, mass titration, electrophoretic mobility, and modeling of the electrical double layer. Adsorption of alizarin was also performed in order to show some particular features of the HDL. Net hydroxyl adsorption, which increases with increasing pH and decreasing supporting electrolyte concentration, takes place above pH 5. The electrophoretic mobility of the particles was always positive and it decreased when the pH was higher than 9. An isoelectric point of 12 could be estimated by extrapolating the data. The modified MUSIC model was used to estimate deprotonation constants of surface groups and different adsorption models were compared. Good fit of hydroxyl adsorption and electrophoresis could be achieved by considering both OH(-)/Cl(-) exchange at structural sites and proton desorption from surface hydroxyl groups. The modeling, in agreement with alizarin adsorption, indicates that most of the structural positive charge of the LDH is screened at the surface by exchanged anions and negatively charged surface groups. It also suggests that only structural charge sites initially neutralized by chloride ions are active for anion exchange. The remaining sites are blocked by carbonate and do not participate in the exchange.  相似文献   

4.
This paper deals with determining points of zero charge of natural and Na+‐saturated mineral kaolinites using two methods: (1) acid‐base potentiometric titration was employed to obtain the adsorption of H+ and OH? on amphoteric surfaces in solutions of varying ionic strengths in order to determinate graphically the point of zero net proton charge (PZNPC) defined equally as point of zero salt effect (PZSE); (2) mass titration curve at different electrolyte concentrations in order to estimate PZNPCs by interpolation and to compare with those determined by potentiometric titrations. The two methods involved points of zero charge approximately similar for the two kaolinites between 6.5‐7.8, comparable to those reported previously and were in the range expected for these clay minerals. The comparison of potentiometric surface titration curves obtained at 25 °C and those published in the literature reveals significant discrepancies both in the shape and in the pH of PZNPCs values.  相似文献   

5.
铈铁复合氧化物阴离子吸附剂的表面酸碱特性研究   总被引:1,自引:0,他引:1  
研究了用于水体砷等有害阴离子去除的稀土铈铁复合氧化物吸附剂的表面酸碱特性。利用电位滴定实验求定了铈铁复合氧化物吸附剂、铁氧化物和铈氧化物的表面质子电荷密度s0、零电荷点pHzpc (分别为5.8,6.2和6.8),表明特性吸附在砷等的去除中起主要的作用,铈铁复合氧化物吸附剂的表面总吸附位NS为4.1×10-3mol/L,运用表面络合恒定容量模式求算此复合氧化物吸附剂的表面固有酸度常数pKa1和pKa2,为进一步研究有害阴离子与去除材料的表面络合作用机制提供了重要参数。  相似文献   

6.
Suspension of a Tunisian purified smectite and American montmorillonite are studied by acid-base potentiometric and mass titrations. These experimental methods are used to determine the point of zero net proton charge (PZNPC). A very good agreement is observed between the two kinds of experiments. The two Namontmorillonites, studied at different ionic strengths, present proton adsorption vs. pH curves with a common crossing point. The PZNPC of the edge sites are 8.02 for Tunisian purified smectite and 8.11 for pure American montmorillonite. By analyzing the proton adsorption or desorption (H+ vs. pH) curves, one may assume the presence of four active sites at the surface. The montmorillonite surface undergoes two successive protonations and two successive deprotonations. Below pH < PZNPC and in acidic range, the cation exchange at layer sites and protonation of edge sites (>A1OH groups) occur simultaneously. For pH > PZNPC and in alkaline pH range, deprotonation of surface hydroxyl groups exposed at the edge sites (>SiOH, and >A1OH at high pH) of montmorillonite platelets causes an overall negative charge. Published in Russian in Elektrokhimiya, 2007, Vol. 43, No. 2, pp. 175–187. The text was submitted by the authors in English.  相似文献   

7.
ABSTRACT: In this paper, the surface stoichiometry, acid-base properties as well as the adsorption of xanthate at ZnS surfaces were studied by means of potentiometric titration, adsorption and solution speciation modeling. The surface proton binding site was determined by using Gran plot to evaluate the potentiometric titration data. Testing results implied that for stoichiometric surfaces of zinc sulfide, the proton and hydroxide determine the surface charge. For the nonstoichiometric surfaces, the surface charge is controlled by proton, hydroxide, zinc and sulfide ions depending on specific conditions. The xanthate adsorption decreases with increasing solution pH, which indicates an ion exchange reaction at the surfaces. Based on experimental results, the surface protonation, deprotonation, stoichiometry and xanthate adsorption mechanism were discussed.  相似文献   

8.
The aim of the present study is to compare available surface titration curves of kaolinite, to explain the differences between them, and to constrain their interpretation based on predictions of surface protonation that emerged from dissolution experiments. Comparison of six surface titration curves obtained at 25 degrees C reveals significant discrepancies, both in the shape of the curves and in the pH of the point of zero net proton charge (pH(PZNPC)). Based on an analysis of the different sites available for adsorption on kaolinite surfaces we conclude that different kaolinite samples are expected to have similar pH(PZNPC). Therefore, the major reason for the differences in the observed surface protonation is related to the different ways in which the pH(PZNPC) was determined. To compare the titration curves, some of the curves were recalculated so that the proton surface concentrations of all the titration curves would be zero around pH 5. As a result, we obtained a good agreement between the titration curves. A prediction of the molar fraction of protonated sites was retrieved from modeling of kaolinite dissolution reaction and was compared to the protonation data obtained from surface titration. The model successfully predicts the surface protonation data of most of the surface titrations.  相似文献   

9.
胶束溶液中某些氨基酸和二肽的解离常数   总被引:1,自引:0,他引:1  
用pH电位法测定了在SDS(十二烷基磺酸钠)胶束溶液中甘氨酰丙氨酸和六种氨基酸(甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸)的两级酸解离常数pKa1和pKa2,发现与水溶液相比,pKa值均显著增加,即SDS胶束形成强烈抑制质子解离,结合^1HNMR测定结果,讨论了pKa1和pKa2随SDS浓度的变化规律以及与各配体自身结构的关系。  相似文献   

10.
Iron oxide (Fe2O3) was identified and characterized by surface area, X-ray diffractometry, and FTIR analyses. Surface charge densities, point of zero charge (PZC), and surface ionization constants were determined from the potentiometric titration data in various aqueous and aqueous organic mixed solvents in the temperature range 293-313 K. The surface charge densities were observed to decrease with the increase in temperature and concentration of metal ions in both the aqueous and aqueous organic mixed solvents. The absolute values of the surface charge density were found to change in the order aqueous > aqueous/methanol > aqueous/ethanol. Further, the PZC of the iron oxide was observed to shift to the higher pH values in the order ethanol > methanol > aqueous solution, which indicated a decrease in the acidity of the surface -OH groups. The pKa1 and pKa2 values of iron oxide were also determined and then used for determination of the surface potential (psi0) of the solid in aqueous and aqueous organic mixed solvents. The surface potential-surface charge curves generally supplemented the results derived from psi0-pH curves.  相似文献   

11.
Metal (hydr)oxides have different types of surface groups. Fluoride ions have been used as a probe to assess the number of surface sites. We have studied the F(-) adsorption on goethite by measuring the F(-) and H(+) interaction and F(-) adsorption isotherms. Fluoride ions exchange against singly coordinated surface hydroxyls at low F(-) concentrations. At higher concentrations also the doubly coordinated OH groups are involved. The replacement of a surface OH(-) by F(-) suggests that all F charge (-1) is located at the surface in contrast to oxyanions which have a charge distribution in the interface due to the binding structure in which the anion only partially coordinates with the surface. Analysis of our F(-) data with the CD-MUSIC approach shows that the formation of the fluoride surface complex is accompanied by a redistribution of charge. This is supposed to be due to a net switch in the H bonding as a result of the change of the type of surface complex from donating (FeOH, FeOH(2)) to proton accepting (FeF). The modeled redistribution of charge is approximately equivalent with the change of a donating H bond into an accepting H bond. At high F(-) concentrations precipitation of F(-), as for instance FeF(3)(s), may occur. The rate of formation is catalyzed by the presence of high electrolyte concentrations. Copyright 2000 Academic Press.  相似文献   

12.
The effects of experimental procedures on the acid-base consumption titration curves of montmorillonite suspension were studied using continuous potentiometric titration. For that purpose, the hysteresis amplitudes between the acid and base branches were found to be useful to systematically evaluate the impacts of storage conditions (wet or dried), the atmosphere in titration reactor, the solid-liquid ratio, the time interval between successive increments, and the ionic strength. In the case of storage conditions, the increase of the hysteresis was significantly higher for longer storage of clay in suspension and drying procedures compared to "fresh" clay suspension. The titration carried out under air demonstrated carbonate contamination that could only be cancelled by performing experiments under inert gas. Interestingly, the increase of the time intervals between successive increments of titrant strongly emphasized the amplitude of hysteresis, which could be correlated with the slow kinetic process specifically observed for acid addition in acid media. Thus, such kinetic behavior is probably associated with dissolution processes of clay particles. However, the resulting curves recorded at different ionic strengths under optimized conditions did not show the common intersection point required to define point of zero charge. Nevertheless, the ionic strength dependence of the point of zero net proton charge suggested that the point of zero charge of sodic montmorillonite could be estimated as lower than 5.  相似文献   

13.
By employing the nonlinear optical, interface selective experiment of sum frequency spectroscopy together with independent ab initio and density functional theory calculations, we determine the functional species of a corundum (001) surface: doubly coordinated OH groups which differ in their bond tilt angles. The interaction of the functional species with the adjacent water molecules is also observed. In a large pH range around the point of zero charge, the interaction is not controlled electrostatically but by hydrogen bonding. The functional species' tilt angles are crucial parameters, determining whether the species act as hydrogen bond donors or acceptors.  相似文献   

14.
High-energy tandem mass spectrometry and molecular dynamics calculations are used to determine the locations of charge in metastably decomposing (M + 2H)2+ ions of human angiotensin II. Charge-separation reactions provide critical information regarding charge sites in multiple charged ions. The most probable kinetic energy released (Tm.p.) from these decompositions are obtained using kinetic energy release distributions (KERDs) in conjunction with MS/MS (MS2), MS/MS/MS (MS3), and MS/MS/MS/MS (MS4) experiments. The most abundant singly and doubly charged product ions arise from precursor ion structures in which one proton is located on the arginine (Arg) side chain and the other proton is located on a distal peptide backbone carbonyl oxygen. The MS3 KERD experiments show unequivocally that neither the N-terminal amine nor the aspartic acid (Asp) side chain are sites of protonation. In the gas phase, protonation of the less basic peptide backbone instead of the more proximal and basic histidine (His) side chain is favored as a result of reduced coulomb repulsion between the two charge sites. The singly and doubly charged product ions of lesser abundance arise from precursor ion structures in which one proton is located on the Arg side chain and the other on the His side chain. This is demonstrated in the MS3 and MS4 mass-analyzed ion kinetic energy spectrometry experiments. Interestingly, (b7" + OH)2+ product ions, like the (M + 2H)2+ ions of angiotensin II, are observed to have at least two different decomposing structures in which charge sites have a primary and secondary location.  相似文献   

15.
The protonation behavior of the iron hydrogenase active-site mimic [Fe2(mu-adt)(CO)4(PMe3)2] (1; adt=N-benzyl-azadithiolate) has been investigated by spectroscopic, electrochemical, and computational methods. The combination of an adt bridge and electron-donating phosphine ligands allows protonation of either the adt nitrogen to give [Fe2(mu-Hadt)(CO)4(PMe3)2]+ ([1 H]+), the Fe-Fe bond to give [Fe2(mu-adt)(mu-H)(CO)4(PMe3)2]+ ([1 Hy]+), or both sites simultaneously to give [Fe2(mu-Hadt)(mu-H)(CO)4(PMe3)2]2+ ([1 HHy]2 +). Complex 1 and its protonation products have been characterized in acetonitrile solution by IR, (1)H, and (31)P NMR spectroscopy. The solution structures of all protonation states feature a basal/basal orientation of the phosphine ligands, which contrasts with the basal/apical structure of 1 in the solid state. Density functional calculations have been performed on all protonation states and a comparison between calculated and experimental spectra confirms the structural assignments. The ligand protonated complex [1 H]+ (pKa=12) is the initial, metastable protonation product while the hydride [1 Hy]+ (pKa=15) is the thermodynamically stable singly protonated form. Tautomerization of cation [1 H]+ to [1 Hy]+ does not occur spontaneously. However, it can be catalyzed by HCl (k=2.2 m(-1) s(-1)), which results in the selective formation of cation [1 Hy]+. The protonations of the two basic sites have strong mutual effects on their basicities such that the hydride (pK(a)=8) and the ammonium proton (pK(a)=5) of the doubly protonated cationic complex [1 HHy]2+ are considerably more acidic than in the singly protonated analogues. The formation of dication [1 HHy]2+ from cation [1 H]+ is exceptionally slow with perchloric or trifluoromethanesulfonic acid (k=0.15 m(-1) s(-1)), while the dication is formed substantially faster (k>10(2) m(-1) s(-1)) with hydrobromic acid. Electrochemically, 1 undergoes irreversible reduction at -2.2 V versus ferrocene, and this potential shifts to -1.6, -1.1, and -1.0 V for the cationic complexes [1 H]+, [1 Hy]+, and [1 HHy]2+, respectively, upon protonation. The doubly protonated form [1 HHy]2+ is reduced at less negative potential than all previously reported hydrogenase models, although catalytic proton reduction at this potential is characterized by slow turnover.  相似文献   

16.
Sorption of phosphate onto gibbsite (gamma-Al(OH)3) and kaolinite has been studied by both macroscopic and 31P solid-state NMR measurements. Together these measurements indicate that phosphate is sorbed by a combination of surface complexation and surface precipitation with the relative amounts of these phases depending on pH and phosphate concentration. At low pH and high phosphate concentrations sorption is dominated by the presence of both amorphous and crystalline precipitate phases. The similarity between the single-pulse and CP/MAS NMR spectra suggests that the precipitate phases form a thin layer on the surface of the particles in close contact with protons from surface hydroxyl groups or coordinated water molecules. While the crystalline phase is only evident on samples below pH 7, amorphous AlPO4 was found at all pH and phosphate concentrations studied. As pH was increased the fraction of phosphate sorbed as an inner-sphere complex increased, becoming the dominant surface species by pH 8. Comparison of sorption and NMR results suggests that the inner-sphere complexes form by monodentate coordination to singly coordinated Al-OH sites on the edges of the gibbsite and kaolinite crystals. Outer-sphere phosphate complexes, which are readily desorbed, are also present at high pH.  相似文献   

17.
氢氧化铝镁钠米颗粒的零电荷点及电荷密度研究   总被引:6,自引:1,他引:5  
探讨了电位滴定(PT)法测定的零电荷点的物理意义, 认为是零净电荷点(ZPNC)。并对零净电荷点pH(pHZPNC), 零可变电荷点pH(pHZPVC), 永久电荷密度(σP), 可变电荷密度(σV)和净电荷密度(σT)之间的关系进行了理论分析。用PT法测定了氢氧化铝镁纳米颗粒的pHZPNC和σP, 探讨了电解质浓度和pH对各电化学性质的影响规律。另外, 还考察了CO3^2^-对PT法测定结果的影响。  相似文献   

18.
The parallel shape of the potentiometric titration curves for montmorillonite suspension is explained using the surface complexation model and taking into account the surface heterogeneity. The homogeneous models give accurate predictions only if they assume unphysically large values of the equilibrium constants for the exchange process occurring on the basal plane. However, the assumption that the basal plane is energetically heterogeneous allows to fit the experimental data (reported by Avena and De Pauli [M. Avena, C.P. De Pauli, J. Colloid Interface Sci. 202 (1998) 195-204]) for reasonable values of exchange equilibrium constant equal to 1.26 (suggested by Fletcher and Sposito [P. Fletcher, G. Sposito, Clay Miner. 24 (1989) 375-391]). Moreover, we observed the typical behavior of point of zero net proton charge (pznpc) as a function of logarithm of the electrolyte concentration (log[C]). We showed that the slope of the linear dependence, pznpc=f(log[C]), is proportional to the number of isomorphic substitutions in the crystal phase, which was also observed in the experimental studies.  相似文献   

19.
The surface charge and adsorption densities of Na+ and Cl ions at the zirconium dioxide/electrolyte interface have been determined as a function of pH for 0.1, 0.01 and 0.001 M solutions of NaCl. Using potentiometric titration of the surface hydroxy groups, it was found that the point of zero charge occurred at pH 4.3±0.15. The results are discussed in terms of site binding model of the electric double layer. The ionization and complexation constants have also been determined.  相似文献   

20.
The electrical properties of colloidal asphaltene/water solution interface were determined by carrying out the potentiometric titration and electrokinetic measurements. Asphaltenes in aqueous solutions exhibit typical organic colloid properties i.e. surface charge and electrophoretic mobility. It was considered that the surface charge at the asphaltene particles is a result of protonation and dissociation reactions of surface functional groups. On the base of the surface charge density data vs. pH the surface reaction constants were calculated by numerical method. The agreement of these values with calculated ones, on the base of ζ potential data, is noticeable.

The characteristic feature of the investigated systems is the maximum, appearing on the curve ζ potential vs. electrolyte concentration. This behaviour is explained by hair layer ” structure of the asphaltene surface  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号