首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a general synthetic strategy for the preparation of a series of macrocyclic chiral manganese(III) salen complexes. The developed reaction pathway allows the modulation of the different key groups, namely, the chiral diimine, the bulky substituents in positions 3 and 3', and the linker used in the macrocyclization of the Schiff base. The different complexes presented here illustrate these readily available structural variations. The catalytic properties of the catalysts (5 mol %) were improved for the asymmetric epoxidation of 2,2'-dimethylchromene with NaOCl or H2O2 as oxygen atom donor. A large range of enantiomeric excesses was obtained (ee values from 30% to 96%), depending on the features and the stability of the complexes. The most efficient catalyst, in terms of stereoinduction (ee value = 96%), contains a diiminocyclohexyl moiety, ethyl groups in positions 3 and 3', and a short polyether junction arm.  相似文献   

2.
The kinetics of Ru(III) ion, Ru(III)-EDTA (1:1) and Ru(III)-IMDA (1:1) catalyzed oxidation of ascorbic acid by molecular oxygen are investigated at 25°C, μ = 0.1 M KNO3, in the pH range 1.50 to 2.75. First-order kinetics were observed with respect to the concentrations of Ru(III) ion, Ru(III)-EDTA, Ru(III)-IMDA and ascorbic acid. The rate of oxidation was found to be inversely proportional to the hydrogen ion concentration. One-half-order and zero-order dependences with respect to the concentration of molecular oxygen were found in the cases of Ru(III) ion and Ru(III)-amino-polycarboxylic acid chelate-catalyzed oxidations, respectively. An inverse relationship was found between the stability and catalytic activity of the Ru(III) chelates of aminopolycarboxylic acids. The catalytic activities of Ru(III) ion and its chelates increase in the order Ru(III)-EDTA < Ru(III)-IMDA < Ru(III). The mechanistic implications of the oxidations catalyzed by Ru(III) ion and its chelates are discussed.  相似文献   

3.
4.
A series of new chiral binol based [1+1] macrocyclic Schiff bases have been synthesized in high yields in short reaction times via cyclo-condensation of dialdehydes with long tethers and chiral diamines. Macrocyclic Mn(salen) complexes containing N2O2 salen units incorporated with spacers of increased tether lengths were synthesized and characterized. The newly synthesized catalyst system was successfully employed for the enantioselective epoxidation of unfunctionalized olefins with high yields and good enantioselectivity.  相似文献   

5.
6.
A variety of sulfides were converted to the corresponding sulfoxide derivatives with 70% t‐BuOOH (water) as the oxidant in the presence of catalytic quantity of Fe2(SO4)3. The method described has a wide range of applications, involves simple work‐up, exhibits chemoselectivity/enantioselectivity and proceeds under mild reaction conditions. The resulting products are obtained in good yield within a reasonable time. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Zeolite-X exchanged with RhIII compounds and activated at 450 °C in O2 contains two paramagnetic species involving rhodium: these, detected by e.s.r, are RhII and superoxides of RhIII. Superoxo-rhodium(III) is formed by the oxidation with O2 of RhII generated in the heat treatment.  相似文献   

8.
Lemma K  Bakac A 《Inorganic chemistry》2004,43(14):4505-4510
Oxygen atom transfer from trans-L(H(2)O)RhOOH(2+) [L = [14]aneN(4) (L(1)), meso-Me(6)[14]aneN(4) (L(2)), and (NH(3))(4)] to iodide takes place according to the rate law -d[L(H(2)O)RhOOH(2+)]/dt = k(I)[L(H(2)O)RhOOH(2+)][I(-)][H(+)]. At 0.10 M ionic strength and 25 degrees C, the rate constant k(I)/M(-)(2) s(-)(1) has values of 8.8 x 10(3) [L = (NH(3))(4)], 536 (L(1)), and 530 (L(2)). The final products are LRh(H(2)O)(2)(3+) and I(2)/I(3)(-). The (NH(3))(4)(H(2)O)RhOOH(2+)/Br(-) reaction also exhibits mixed third-order kinetics with k(Br) approximately 1.8 M(-)(2) s(-)(1) at high concentrations of acid (close to 1 M) and bromide (close to 0.1 M) and an ionic strength of 1.0 M. Under these conditions, Br(2)/Br(3)(-) is produced in stoichiometric amounts. As the concentrations of acid and bromide decrease, the reaction begins to generate O(2) at the expense of Br(2), until the limit at which [H(+)] 2(NH(3))(4)(H(2)O)RhOH(2+) + O(2); i.e., the reaction has turned into the bromide-catalyzed disproportionation of coordinated hydroperoxide. In the proposed mechanism, the hydrolysis of the initially formed Br(2) produces HOBr, the active oxidant for the second equivalent of (NH(3))(4)(H(2)O)RhOOH(2+). The rate constant k(HOBr) for the HOBr/(NH(3))(4)(H(2)O)RhOOH(2+) reaction is 2.9 x 10(8) M(-)(1) s(-)(1).  相似文献   

9.
Dinuclear europium(III) complexes of the macrocycles 1,3-bis[1-(4,7,10-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane]-m-xylene (1), 1,4-bis[1-(4,7,10-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane]-p-xylene (2), and mononuclear europium(III) complexes of macrocycles 1-methyl-,4,7,10-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane (3), 1-[3'-(N,N-diethylaminomethyl)benzyl]-4,7,10-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane (4), and 1,4,7-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane (5) were prepared. Studies using direct excitation ((7)F0 --> (5)D0) europium(III) luminescence spectroscopy show that each Eu(III) center in the mononuclear and dinuclear complexes has two water ligands at pH 7.0, I = 0.10 M (NaNO3) and that there are no water ligand ionizations over the pH range of 7-9. All complexes promote cleavage of the RNA analogue 2-hydroxypropyl-4-nitrophenyl phosphate (HpPNP) at 25 degrees C (I = 0.10 M (NaNO3), 20 mM buffer). Second-order rate constants for the cleavage of HpPNP by the catalysts increase linearly with pH in the pH range of 7-9. The second-order rate constant for HpPNP cleavage by the dinuclear Eu(III) complex (Eu2(1)) at pH 7 is 200 and 23-fold higher than that of Eu(5) and Eu(3), respectively, but only 7-fold higher than the mononuclear complex with an aryl pendent group, Eu(4). This shows that the macrocycle substituent modulates the efficiency of the Eu(III) catalysts. Eu2(1) promotes cleavage of a dinucleoside, uridylyl-3',5'-uridine (UpU) with a second-order rate constant at pH 7.6 (0.021 M(-1) s(-1)) that is 46-fold higher than that of the mononuclear Eu(5) complex. Methyl phosphate binding to the Eu(III) complexes is energetically most favorable for the best catalysts, and this supports an important role for the catalyst in stabilization of the developing negative charge on the phosphorane transition state. Despite the formation of a bridging phosphate ester between the two Eu(III) centers in Eu2(1) as shown by luminescence spectroscopy, the two metal ion centers are only weakly cooperative in cleavage of RNA and RNA analogues.  相似文献   

10.
A method for the synthesis of complex rhodium(III) salts of the trans-dichlorotetramine series with isonicotinic acid (iso-NicH) was developed. Three new compounds were isolated: [Rh(iso-NicH)3(iso-Nic)Cl2] (I), [Rh(iso-NicH)4Cl2]Cl · 4H2O (II), and Na3[Rh(iso-Nic)4Cl2] · 9H2O (III). The compounds synthesized were characterized by elemental analysis, X-ray phase analysis, and IR spectroscopy. The crystal structures of salts II and III were determined by X-ray diffraction analysis. The thermal properties of all compounds were studied by the DTA method. The intermediate and final thermolysis products were isolated and characterized.  相似文献   

11.
Lanthanide(III) nosylates are novel, recyclable catalysts prepared from the noncorrosive and inexpensive p-nitrotoluenesulfonic acid and the corresponding lanthanide(III) oxide. With 5-10% catalyst loading, atom economic nitration of simple aromatic compounds was achieved in good to high yields.  相似文献   

12.
Polyazapolycarboxylic acids are known to be efficient ligands for the development of gadolinium-based contrast agents used in magnetic resonance imaging (MRI). Given that rigidification of the ligand structure seems to be an important structural parameter to increase the relaxivity of the corresponding gadolinium complex, we have synthesized a new tricyclic tetraazatriacetate ligand from commercially available trans-2-aminocyclohexanol. In the synthetic routes described here, the 2-nitrobenzenesulfonamide chemistry was used to selectively functionalize the polyamine precursors.  相似文献   

13.
The reaction of [(η5-C5Me5)M(μCl)Cl]2 with the ligand (LL) in the presence of sodium methoxide yielded compounds of general formula [(η5-C5Me5)M(LL)Cl] (1–10) (where M = Ir or Rh and LL = NO or OO chelate ligands). Azido complexes of formulation [(η5-C5Me5)M(LL)N3] (11–20) have been prepared by the reaction of [(η5-C5Me5)M(μN3)(X)]2 (X = Cl or N3) with the corresponding ligands or by the direct reaction of [(η5-C5Me5)M(LL)Cl] with NaN3. These azido complexes [(η5-C5Me5)M(LL)N3] undergo 1,3-dipolar cycloaddition reaction with substituted alkynes in CH2Cl2 and for the first time in ethanol at room temperature to yield iridium (III) and rhodium (III) triazoles (21–28). The compounds were characterized on the basis of spectroscopic data, and the molecular structures of 2 and 26 have been established by single crystal X-ray diffraction.  相似文献   

14.
Summary RhIII-catalysed oxidation of 1,2-glycols by acid bromate was studied in the presence of Hg(OAc)2 at 40°C. The order is zero with respect to [BrO 3 ] and unity in [RhIII] and in [glycol]. The oxidation rate is unaffected by variation in [H+] and added salts. Stoichiometric studies indicate that one mole of bromate consumes three moles of glycol giving the corresponding carbonyl compounds. A suitable mechanism involving direct reaction between RhIII and glycol to give product,via hydride ion abstraction by RhIII, is proposed.  相似文献   

15.
The organochalcogen ligands derived from 3-methyl-imidazole-2-thione/selone groups, Mbit, Mbis, Ebit and Ebis [Mbit = 1,1'-methylenebis(3-methyl-imidazole-2-thione); Mbis = 1,1'-methylenebis(3-methyl-imidazole-2-selone), Ebit = 1,1'-(1,2-ethanediyl)bis(3-methyl-imidazole-2-thione), Ebis = 1,1'-(1,2-ethanediyl)bis(3-methyl-imidazole-2-selone)] have been synthesized and characterized. Reactions of [Cp*Ir(micro-Cl)Cl]2 and [Cp*Rh(micro-Cl)Cl]2 (Cp* = eta5-pentamethylcyclopentadienyl) with Mbit, Mbis, Ebit and Ebis result in the formation of the complexes [Cp*Ir(Mbit)Cl]Cl 1a x Cl), [Cp*Ir(Mbis)Cl]Cl (3a x Cl), [Cp*Ir(Ebit)Cl]Cl (1b x Cl), [Cp*Ir(Ebis)Cl]Cl (2a x Cl), [Cp*Rh(Mbit)Cl]Cl (2b x Cl), Cp*Rh(Mbis)Cl][Cp*RhCl(3)] (3b x[Cp*RhCl(3)]), [Cp*Rh(Ebit)Cl]Cl (4a x Cl) and [Cp*Rh(Ebis)Cl]Cl (4b x Cl), respectively. All compounds have been characterized by elemental analysis, NMR and IR spectra. The molecular structures of 1b, 2b, 3a, 3b and 4a have been determined by X-ray crystallography. After activation with methylaluminoxane (MAO), the iridium complexes exhibit moderate activities for the vinyl polymerization of norbornene.  相似文献   

16.
Reactions of [[MCl2(Cp*)]2] (1: M=Ir, 2: M=Rh) with bidentate ligands (L) such as 1,4-diisocyano-2,5-dimethylbenzene (a), 1,4-diisocyano-2,3,5,6-tetramethylbenzene (b), pyrazine (c) or 4,4'-dipyridyl (d) gave the corresponding dinuclear complexes [[MCl2(Cp*)]2(L)] (M=Ir: 3a, 3b, 5c, 5d; M=Rh: 4b, 6c, 6d), which were converted into tetranuclear complexes [[M2(mu-Cl)2(Cp*)2]2(L)2](OTf)4 (M=Ir: 7c, 7d, 9a, 9b; M=Rh: 8e, 8d, 10b) on treatment with Ag(OTf). X-ray analyses of 8c and 8d revealed that each of four pentamethylcyclopentadienyl metal moieties was connected by two mu-Cl-bridged atoms and a bidentate ligand to construct a rectangular cavity with the dimensions of 3.7 x 7.0 A for 8c and 3.7 x 11.5 A for 8d. Both the Rh2Cl2 and pyrazine (or 4,4'dipyridyl) ring planes are perpendicular to the Rh4 plane. Treatment of Cl-bridged complexes (7c, 7d, 8e, 8d, 9b, and 10b) with a different ligand (L') resulted in cleavage of the Cl bridges to produce two-dimensional complexes [[MCl(Cp*)]4[(L)-(L')]2](OTf)4 (11ac, 11bc, 11bd, 12bc, and 12bd) with two different ligand "edges". Complex 10b reacted readily with 1,4-diisocyano-2,3,5,6-tetramethylbenzene (b) to give a tetranuclear rhodium(III) complex 12bb. The structure of tetranuclear complexes was confirmed by X-ray analysis of 11bc. Each [MCp*] moiety is surrounded by a Cl atom, isocyanide, and pyrazine (or 4,4'-dipyridyl) and the dimensions of its cavity are 7.0 x 11.6 A.  相似文献   

17.
This study demonstrates the first zeolite-catalyzed synthesis of piperidine derivatives, including peptidomimetics and indoloquinolizidine alkaloids. The approach developed utilizes a highly effective one-pot reaction cascade, through imine formation and imino-Diels-Alder reactions, promoted by scandium-loaded zeolites as a heterogeneous catalyst. The methodology described benefits from very low catalyst loadings (≤5?mol?% of Sc(III) ), commercially and readily available starting materials, and mild reaction conditions. Furthermore, the Sc(III) -zeolite catalyst can be readily reused more than 10 times without any loss in efficiency.  相似文献   

18.
Summary PPP forms an orange-red coloured complex with rhodium(III) at room temperature (27°) in the presence of sodium acetate-hydrochloric acid buffer of pH 1.0–3.0 containing copper(II) and ascorbic acid. The complex exhibits absorption maximum at 470 nm. Beer's law is valid over the rhodium concentration range 0.1–18g/ml. Sandell's sensitivity of the reaction is 1.8·10–3 g Rh/cm2 and the molar extinction coefficient is 5.68×103 l·mol–1cm–1 at 470 nm. The composition of the complex is 11 and the apparent stability constant of the complex at pH 2.5 and 27° has the logK value of 4.0. The proposed method has been used for the determination of rhodium in thermocouple wires and in synthetic mixtures containing palladium, ruthenium, osmium, uranium or iridium.
Propionylpromazinphosphat (PPP), ein neues Reagens für die spektrophotometrische Bestimmung von Rhodium(III)
Zusammenfassung PPP bildet mit Rh(III) bei Zimmertemperatur (27°) in Gegenwart von Natriumacetat-Salzsäure (pH 1,0–3,0), Cu(II) und Ascorbinsäure eine orange-rote Komplexverbindung mit einem Absorptionsmaximum bei 470 nm. Das Beersche Gesetz gilt für Konzentrationen von 0,1 bis 18g/ml. Die Empfindlichkeit nach Sandell beträgt 1,8×10–3 g Rh/cm2; der molare Extinktionskoeffizient bei 470 nm ist 5,68×103 l·mol–1·cm–1. Die Zusammensetzung der Komplexverbindung entspricht dem Verhältnis 11, die scheinbare Stabilitätskonstante bei pH 2,5 und 27° entspricht log K=4,0. Das vorgeschlagene Verfahren diente zur Rh-Bestimmung in Thermoelementdraht sowie in synthetischen Gemischen aus Pd, Ru, Os, U und Ir.
  相似文献   

19.
在浓盐酸存在下,1,4,7,10-四氮杂环十二烷和1,4,8,11-四氮杂环十四烷分别与亚磷酸、甲醛发生Mannich型反应,得到相应的N,N’,N”,N-四膦酸甲基1,4,7.10-四氮杂环十二烷(DOTP)和N,N’,N”,N-四膦酸甲基1,4,8,11-四氮杂环十四烷(TETP)。产物纯度较高。在不同的pH条件下测定1HNMR,考察化学位移的变化。  相似文献   

20.
Six catalysts MnClL1–MnClL6, containing two crown ether rings, were synthesised and characterised by IR spectroscopy and CHN microanalysis. A combination of Oxone, as oxidant, and these catalysts was used for the oxidation of cyclohexene and cyclooctene. Among the prepared catalysts, MnClL3 and MnClL4 exhibited the best catalytic efficiency. Catalysts MnClL1, MnClL2 and MnClL6 showed a moderate efficiency and MnClL1 showed the lowest efficiency. Comparison of MmclL1–MnClL4 and MnClL6 containing crown ether rings with an identical mixture of uncrowned complex MnClL7 [manganese N,N′-bis(salicylidene)ethylenediamine chloride] and crown ether 2 (4′-hydroxybenzo-15-crown-5), revealed a more important role for the crown ether than increasing solubility of Oxone in the organic phase. The effect on reaction times and chemical yields of temperature, pyridine as the axial base, and different alkali metal salts was also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号