首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
In this article, we generalize known integral formulae (due to Brito–Langevin–Rosenberg, Ranjan and the second author) for foliations of codimension 1 or unit vector fields and obtain an infinite series of such formulae involving invariants of the Weingarten operator of a unit vector field, of the Jacobi operator in its direction, and their products. We write several such formulae explicitly, on locally symmetric spaces as well as on arbitrary Riemannian manifolds where they involve also covariant derivatives of the Jacobi operator. We work also with foliations of codimension 1 (or vector fields) which admit “good” (in a sense) singularities.  相似文献   

2.
In this article, we show that the Newton transformations of the shape operator can be applied successfully to foliated manifolds. Using these transformations, we generalize known integral formulae (due to Brito–Langevin–Rosenberg, Ranjan, Walczak, etc.) for foliations of codimension one. We obtain integral formulae involving rth mean curvature of the second fundamental form of a foliation, the Jacobi operator in the direction orthogonal to the foliation, and their products. We apply our formulae to totally umbilical foliations and foliations whose leaves have constant second order mean curvature.  相似文献   

3.
Intuitively, a complex Liouvillian function is one that is obtained from complex rational functions by a finite process of integrations, exponentiations and algebraic operations. In the framework of ordinary differential equations the study of equations admitting Liouvillian solutions is related to the study of ordinary differential equations that can be integrated by the use of elementary functions, that is, functions appearing in the Differential Calculus. A more precise and geometrical approach to this problem naturally leads us to consider the theory of foliations. This paper is devoted to the study of foliations that admit a Liouvillian first integral. We study holomorphic foliations (of dimension or codimension one) that admit a Liouvillian first integral. We extend results of Singer (1992) [20] related to Camacho and Scárdua (2001) [4], to foliations on compact manifolds, Stein manifolds, codimension-one projective foliations and germs of foliations as well.  相似文献   

4.
In this paper we give an asymptotic formula for a matrix integral which plays a crucial role in the approach of Diaconis et al. to random matrix eigenvalues. The choice of parameter for the asymptotic analysis is motivated by an invariant-theoretic interpretation of this type of integral. For arbitrary regular irreducible representations of arbitrary connected semisimple compact Lie groups, we obtain an asymptotic formula for the trace of permutation operators on the space of tensor invariants, thus extending a result of Biane on the dimension of these spaces.

  相似文献   


5.
On employing isoparametric, piecewise linear shape functions over a flat triangle, exact formulae are derived for all surface potentials involved in the numerical treatment of three-dimensional singular and hyper-singular boundary integral equations in linear elasticity. These formulae are valid for an arbitrary source point in space and are represented as analytical expressions along the edges of the integration triangle. They can be employed to solve integral equations defined on triangulated surfaces via a collocation method or may be utilized as analytical expressions for the inner integrals in a Galerkin technique. A numerical example involving a unit triangle and a source point located at various distances above it, as well as sample problems solved by a collocation boundary element method for the Lamé equation are included to validate the proposed formulae.  相似文献   

6.
In 1988 Adams obtained sharp Moser–Trudinger inequalities on bounded domains of Rn. The main step was a sharp exponential integral inequality for convolutions with the Riesz potential. In this paper we extend and improve Adams' results to functions defined on arbitrary measure spaces with finite measure. The Riesz fractional integral is replaced by general integral operators, whose kernels satisfy suitable and explicit growth conditions, given in terms of their distribution functions; natural conditions for sharpness are also given. Most of the known results about Moser–Trudinger inequalities can be easily adapted to our unified scheme. We give some new applications of our theorems, including: sharp higher order Moser–Trudinger trace inequalities, sharp Adams/Moser–Trudinger inequalities for general elliptic differential operators (scalar and vector-valued), for sums of weighted potentials, and for operators in the CR setting.  相似文献   

7.
We present several integral and exponential inequalities for formal power series and for both arbitrary entire functions of exponential type and generalized Borel transforms. They are obtained through certain limit procedures which involve the multiparameter binomial inequalities, integral inequalities for continuous functions, and weighted norm inequalities for analytic functions. Some applications to the confluent hypergeometric functions, Bessel functions, Laguerre polynomials, and trigonometric functions are discussed. Also some generalizations are given.  相似文献   

8.
An integral formula for symmetric functions of curvature ofdistributions on closed constant nonnegative sectional curvature spacesis proved. The distributions under consideration are orthogonal to atotally geodesic foliation and the main theorem extends a previousresult concerning the total curvature of codimension-one foliations.  相似文献   

9.
An exact closed form solution in terms of elementary functions has been obtained to the governing integral equation of an external circular crack in a transversely isotropic elastic body. The crack is subjected to arbitrary tangential loading applied antisymmetrically to its faces. The recently discovered method of continuity solutions was used here. The solution to the governing integral equation gives the direct relationship between the tangential displacements of the crack faces and the applied loading. Now a complete solution to the problem, with formulae for the field of all stresses and displacements, is possible.  相似文献   

10.
The number of linear invariants under SO(3) as well as SO(2)of a Cartesian tensor of an arbitrary rank is studied. A linearform is defined in terms of elements of a tensor. It is establishedthat the number of linear invariants of a tensor of rank n underSO(3) equals the dimension of the space of isotropic tensorsof rank n. Formulas for the number of invariants in the twocases are also derived. For the elasticity tensor, our analysisconfirms the results of Norris.  相似文献   

11.
This paper presents a new regularized integral representation of the stress tensor at internal points, and contains derived formulae expressing stresses at internal or boundary points in terms of nodal values of boundary displacements and forces. Comparison is made for accuracy of stresses computed by regularized and non-regularized integral representations.  相似文献   

12.
We present techniques for computing Gerstenhaber brackets on Hochschild cohomology of general twisted tensor product algebras. These techniques involve twisted tensor product resolutions and are based on recent results on Gerstenhaber brackets expressed on arbitrary bimodule resolutions.  相似文献   

13.
We present new formulae (the Slevinsky–Safouhi formulae I and II) for the analytical development of higher order derivatives. These formulae, which are analytic and exact, represent the kth derivative as a discrete sum of only k+1 terms. Involved in the expression for the kth derivative are coefficients of the terms in the summation. These coefficients can be computed recursively and they are not subject to any computational instability. As examples of applications, we develop higher order derivatives of Legendre functions, Chebyshev polynomials of the first kind, Hermite functions and Bessel functions. We also show the general classes of functions to which our new formula is applicable and show how our formula can be applied to certain classes of differential equations. We also presented an application of the formulae of higher order derivatives combined with extrapolation methods in the numerical integration of spherical Bessel integral functions.  相似文献   

14.
We examine the total mixed scalar curvature of a smooth manifold endowed with a distribution as a functional of a pseudo-Riemannian metric. We develop variational formulas for quantities of extrinsic geometry of the distribution and use this key and technical result to find the critical points of this action. Together with the arbitrary variations of the metric, we consider also variations that preserve the volume of the manifold or partially preserve the metric (e.g., on the distribution). For each of those cases, we obtain the Euler–Lagrange equation and its several solutions. Examples of critical metrics that we find are related to various fields of geometry such as contact and 3-Sasakian manifolds, geodesic Riemannian flows, codimension-one foliations, and distributions of interesting geometric properties (e.g., totally umbilical and minimal).  相似文献   

15.
For several classes of soft biological tissues, modelling complexity is in part due to the arrangement of the collagen fibres. In general, the arrangement of the fibres can be described by defining, at each point in the tissue, the structure tensor (i.e. the tensor product of the unit vector of the local fibre arrangement by itself) and a probability distribution of orientation. In this approach, assuming that the fibres do not interact with each other, the overall contribution of the collagen fibres to a given mechanical property of the tissue can be estimated by means of an averaging integral of the constitutive function describing the mechanical property at study over the set of all possible directions in space. Except for the particular case of fibre constitutive functions that are polynomial in the transversely isotropic invariants of the deformation, the averaging integral cannot be evaluated directly, in a single calculation because, in general, the integrand depends both on deformation and on fibre orientation in a non-separable way. The problem is thus, in a sense, analogous to that of solving the integral of a function of two variables, which cannot be split up into the product of two functions, each depending only on one of the variables. Although numerical schemes can be used to evaluate the integral at each deformation increment, this is computationally expensive. With the purpose of containing computational costs, this work proposes approximation methods that are based on the direct integrability of polynomial functions and that do not require the step-by-step evaluation of the averaging integrals. Three different methods are proposed: (a) a Taylor expansion of the fibre constitutive function in the transversely isotropic invariants of the deformation; (b) a Taylor expansion of the fibre constitutive function in the structure tensor; (c) for the case of a fibre constitutive function having a polynomial argument, an approximation in which the directional average of the constitutive function is replaced by the constitutive function evaluated at the directional average of the argument. Each of the proposed methods approximates the averaged constitutive function in such a way that it is multiplicatively decomposed into the product of a function of the deformation only and a function of the structure tensors only. In order to assess the accuracy of these methods, we evaluate the constitutive functions of the elastic potential and the Cauchy stress, for a biaxial test, under different conditions, i.e. different fibre distributions and different ratios of the nominal strains in the two directions. The results are then compared against those obtained for an averaging method available in the literature, as well as against the integration made at each increment of deformation.  相似文献   

16.
We define 2-decompositions of ribbon graphs, which generalize 2-sums and tensor products of graphs. We give formulae for the Bollobás-Riordan polynomial of such a 2-decomposition, and derive the classical Brylawski formula for the Tutte polynomial of a tensor product as a (very) special case. This study was initially motivated from knot theory, and we include an application of our formulae to mutation in knot diagrams.  相似文献   

17.
In this paper, the linear nonhomogeneous integral equation of H-functions is considered to find a new form of H-function as its solution. The Wiener-Hopf technique is used to express a known function into two functions with different zones of analyticity. The linear nonhomogeneous integral equation is thereafter expressed into two different sets of functions having the different zones of regularity. The modified form of Liouville's theorem is thereafter used, Cauchy's integral formulae are used to determine functional representation over the cut region in a complex plane. The new form of H-function is derived both for conservative and nonconservative cases. The existence of solution of linear nonhomogeneous integral equations and its uniqueness are shown. For numerical calculation of this new H-function, a set of useful formulae are derived both for conservative and nonconservative cases.  相似文献   

18.
An interesting property of the midpoint rule and the trapezoidal rule, which is expressed by the so-called Hermite-Hadamard inequalities, is that they provide one-sided approximations to the integral of a convex function. We establish multivariate analogues of the Hermite-Hadamard inequalities and obtain access to multivariate integration formulae via convexity, in analogy to the univariate case. In particular, for simplices of arbitrary dimension, we present two families of integration formulae which both contain a multivariate analogue of the midpoint rule and the trapezoidal rule as boundary cases. The first family also includes a multivariate analogue of a Maclaurin formula and of the two-point Gaussian quadrature formula; the second family includes a multivariate analogue of a formula by P.C. Hammer and of Simpson's rule. In both families, we trace out those formulae which satisfy a Hermite-Hadamard inequality. As an immediate consequence of the latter, we obtain sharp error estimates for twice continuously differentiable functions.

  相似文献   


19.
Using the regular structure model, we average the electrical properties of unidirectional fiber-reinforced metal composites and propose procedures for determination of the effective electrical conductivity tensor of these materials. For the general case of packing of fibers of arbitrary cross section, the problem is reduced to calculation of some functionals determined in solutions of the integral equation of the corresponding boundary current problem for the structure. In the special case of symmetric packing of fibers of circular cross section, the solution is written in the form of series in elliptic functions.Translated from Mekhanika Kompozitnykh Materialov, Vol. 31, No. 4, pp. 533–539, July–August, 1995.  相似文献   

20.
《Optimization》2012,61(6):717-731
In this article, we introduce necessary and sufficient conditions for the tensor product of two convex functions to be convex. For our analysis we introduce the notions of true convexity, jet-convexity, true jet-convexity as well as true log-convexity. The links between jet-convex and log-convex functions are elaborated. As an algebraic tool, we introduce the jet product of two symmetric matrices and study some of its properties. We illustrate our results by an application from global optimization, where a convex underestimator for the tensor product of two functions is constructed as the tensor product of convex underestimators of the single functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号