首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular intrinsic characteristic contour (MICC) is defined based on the classical turning point of electron movement in a molecule. Three typical organic molecules, I.e. Methane, methanol and formic acid, were employed as examples for detailed introduction of our method. Investigations on the cross-sections of MICC provide important information about atomic size changing in the process of forming molecules. The electron density distributions on the MICCs of these molecules were calculated and shown for the first time. Results showed that the electron density distribution on the MICC correlates closely with molecular chemical properties, and it provides a new insight into molecular boundary.  相似文献   

2.
Shape and size of a molecule are the most fun-damental concepts in modern chemistry, and its appli-cations, especially about molecular surface area and molecular volume, are numerous in many fields[1—10]. Most properties of a molecule, including the proc…  相似文献   

3.
The molecular intrinsic characteristic contour (MlCC) is defined based on the classical turning point of electron movement in a molecule. Three typical organic molecules, i.e. methane, methanol and formic acid, were employed as examples for detailed introduction of our method. Investigations on the cross-sections of MlCC provide important information about atomic size changing in the process of forming molecules. The electron density distributions on the MlCCs of these molecules were calculated and shown for the first time. Results showed that the electron density distribution on the MlCC correlates closely with molecular chemical properties, and it provides a new insight into molecular boundary.  相似文献   

4.
Based on the molecular face (MF) theory, the molecular face surface area (MFSA) and molecular face volume (MFV) are defined. For a variety of organic molecules and several inorganic molecules, the MFSA and MFV have been studied and calculated in terms of an algorithm of our own via the Matlab package. The MFV shows a very good linear relationship with the experimentally measured critical molar volume. It is also found that the MFSA and MFV have significant linear correlations with those of the commonly used hard‐sphere model and the electron density isosurface. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

5.
采用Gaussian-03程序中的MP2/6-311++G(2d,2p)方法,优化了FH- Rg(Rg=He,Ne,Ar)二聚体的结构.使用MELD精密从头计算中的CISD方法,结合我们自编的程序,计算了这些二聚体的单电子作用势(PAEM),并绘出了它们的分子形貌图象.分子形貌所提供的形貌特征、前沿电子密度的特征等,可以直观地揭示He,Ne和Ar等原子与HF分子相互作用时2种相互作用的差别,即共价相互作用与非共价相互作用区分的直观形象的表征.从二聚体的内禀特征信息可以看出,F,H和Rg原子都发生了不同程度的变形,HF分子对惰性气体原子有一定影响,而惰性气体原子对HF分子的影响较小.  相似文献   

6.
研究了惰性气体原子(Rg=He,Ne,Ar和Kr)分别向HF分子两端原子接近过程中分子形貌的动态变化,使用MELD精密从头算方法中的CISD/6-311++G(2d,2p)方法,计算了FH-Rg和HF-Rg2个二聚体的单电子作用势、分子平面的边界轮廓以及相应界面上的电子密度.研究表明,惰性气体原子Rg分别向HF的两端接近时,双方的外形在接近的方向上均有伸手欢迎的表示,分子的前沿电子密度也相应的发生变化,对惰性键提供了一种新的认识.  相似文献   

7.
应用分子形貌理论, 研究了类SN2反应过程中的沿着IRC路径上固定点的分子形貌的特征, 计算给出了形状和电子密度特征参数以及各键的Dpb值. 应用Matlab程序绘制了分子特征边界轮廓上的电子密度分布的三维图像, 即分子形貌像, 给出了这类反应的动态变化过程.  相似文献   

8.
A new approach to calculate the potential acting on an electron in a molecule(PAEM) has been established for drawing the molecular face(MF) of a macromolecule, according to the classic point charge model and the atom-bond electronegativity equalization method(ABEEMσπ) for one electron in a molecule. We introduced a dynamic charge distribution from the view of a local electron movement in a molecule based on the new approach, and as further direct evidence, we calculated some physical quantities using the original ab initio method and the new method to verify the accuracy of the method, such as the boundary distance(BD), molecular face surface area(MFSA) and molecular reactivities indicated by the MFs for a variety of organic molecules. All the results by the new method are in agreement with the results by ab initio method.  相似文献   

9.
10.
分子形貌(Molecular face, MF)定义分子的内禀电子转折边界面,同时在其上计算并描绘出前沿电子密度(MFED). MF不仅能显示分子的形状和大小,还能够指示分子的化学反应性.应用M06-2X/6-311++G(d,p)理论方法,对单线态和三线态羟基卡宾分子及其衍生物的质子化反应进行研究并计算了这些反应的活化能.结果表明,吸电性和供电性较强的取代基,均使单线态反应活化能增大,只有吸电性较强的─CN才能使三线态反应活化能增大.应用分子形貌理论研究了上述反应,不仅展示出分子的形貌变化、与反应位点的关联,以及有关物理量的变化倾向,而且还定量地显示出,单线态羟基卡宾及其衍生物分子边界面上前沿电子密度极大值与极小值的差值,与其质子转移反应的活化能之间存在线性相关.  相似文献   

11.
We have developed new force field and parameters for copper(I) and mercury(II) to be used in molecular dynamics simulations of metalloproteins. Parameters have been derived from fitting of ab initio interaction potentials calculated at the MP2 level of theory, and results compared to experimental data when available. Nonbonded parameters for the metals have been calculated from ab initio interaction potentials with TIP3P water. Due to high charge transfer between Cu(I) or Hg(II) and their ligands, the model is restricted to a linear coordination of the metal bonded to two sulfur atoms. The experimentally observed asymmetric distribution of metal ligand bond lengths (r) is accounted for by the addition of an anharmonic (r3) term in the potential. Finally, the new parameters and potential, introduced into the CHARMM force field, are tested in short molecular dynamics simulations of two metal thiolates fragments in water. (Brooks BR et al. J Comput Chem 1983, 4, 1987.1).  相似文献   

12.
Even though lead is a well-known toxicant widely scattered throughout the world since antiquity, its chemistry is poorly documented at the molecular level. Here we investigate the hydration of the Pb(2+) ion by means of first-principles molecular dynamics (Car-Parrinello molecular dynamics, CPMD). We found that the hydrated cation is heptacoordinated in a dynamically holodirected arrangement roughly corresponding to a fluxional distorted pentagonal bipyramid. The time-averaged Pb-O bond length is especially large and amounts to 2.70 A with an associated root-mean-square deviation of 0.26 A. This results from a dynamic exchange between short (<2.6 A), intermediate (2.6-3.0 A) and long (>3.0 A) Pb-O bonds. The latter very long Pb-O distance implies that the determination of the coordination number n(c) from experimental work may not necessarily yield values directly comparable to the theoretical value of n(c)=7, since not all experimental techniques would recognize such a long distance as a bond to the metal cation. Pronounced disorders are evidenced in the second shell, characteristic of a chaotropic cation, and exchanges between the first and second shells cannot be excluded on a timescale of a few tens of picoseconds.  相似文献   

13.
DAMQT‐2.1.0 is a new version of DAMQT package which includes topographical analysis of molecular electron density (MED) and molecular electrostatic potential (MESP), such as mapping of critical points (CPs), creating molecular graphs, and atomic basins. Mapping of CPs is assisted with algorithmic determination of Euler characteristic in order to provide a necessary condition for locating all possible CPs. Apart from the mapping of CPs and determination of molecular graphs, the construction of MESP‐based atomic basin is a new and exclusive feature introduced in DAMQT‐2.1.0. The GUI in DAMQT provides a user‐friendly interface to run the code and visualize the final outputs. MPI libraries have been implemented for all the tasks to develop the parallel version of the software. Almost linear scaling of computational time is achieved with the increasing number of processors while performing various aspects of topography. A brief discussion of molecular graph and atomic basin is provided in the current article highlighting their chemical importance. Appropriate example sets have been presented for demonstrating the functions and efficiency of the code. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
Three species involved in the nucleophilic substitution reaction of hydrosulfide ion and halomethanes are investigated by ab initio calculations. Geometries for stationary structures along the reaction paths are fully performed with the second‐order Møller–Plesset perturbation approximation with the cc‐pVDZ basis set. The monomer geometries determined by the MP2 method match the experimental results very well. Single point energy calculations are carried out at the coupled cluster with perturbative triple excitations CCSD (T) theory with aug‐cc‐pVDZ basis set. Halomethanes have three conformers here, which lead to the three product channels, HSCH3 + F?1, HSCH3 + Cl?1, and HSCH3 + Br?1. The investigation encompasses the six complexes formed among three channels, respectively. By selecting the six complexes as the model, we investigate the binding energy, topological property of the electron charge density and their Laplacian in detail theoretically. Electrostatic density potential maps of halomethanes are generated for the determination of attractive interaction sites. It is proved that the similar misshaped electron clouds of the three halogen atoms result in the similar properties of the carbon‐halogen bonds, and reveals that the product ion‐dipole complexes interactions are predominantly electrostatic in nature. The calculated results predict the binding energy of the most stable complex in six complexes is ?47.06 kcal/mol at the MP2 level of theory. The second channel has the lowest energy barrier, which is ?3.63 kcal/mol at the CCSD (T) levels of theory, is expected to be the most important pathway. It occurs via C? Cl cleavage accompanied by C? S bond formation. The other two channels have higher energy barriers and are expected to have smaller rates. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

15.
The electronic and molecular structures of the monomer and dimer of trimethylalu-minium have been studied using density functional theory and ab initio MP2 method. The optimized geometry of the monomer Al(CH3)3 is of C3h symmetry, whereas that of the dimer [A1(CH3)3]2 contains a carbon-bridged four-membered ring structure with C2h symmetry. The hydrogen-bridged six-membered ring structure is found to be unstable. The calculated dimerization energy for the four-membered ring structure is 78 kJ/mol, in close proximity to the experimental value of 85.27 kJ/mol.  相似文献   

16.
We investigated structures, vibrational frequencies, and rotational barriers of disilane (Si2H6), hexafluorodisilane (Si2F6), and hexamethyldisilane (Si2Me6) by using ab initio molecular orbital and density functional theories. We employed four different levels of theories (i.e., HF/6–31G*, MP2/6–31G*, BLYP/6–31G*, and B3LYP/6–31G*) to optimize the structures and to calculate the vibrational frequencies (except for Si2Me6 at MP2/6–31G*). MP2/6–31G* calculations reproduce experimental bond lengths well, while BLYP/6–31G* calculations largely overestimate some bond lengths. Vibrational frequencies from density functional theories (BLYP/6–31G* and B3LYP/6–31G*) were in reasonably good agreement with experimental values without employing additional correction factors. We calculated the ΔG(298 K) values of the internal rotation by correcting zero-point vibration energies, thermal vibration energies, and entropies. We performed CISD/6–31G*//MP2/6–31G* calculations and found the ΔG(298 K) values for the internal rotation of Si2H6, Si2F6, and Si2Me6 to be 1.36, 2.06, and 2.69 kcal/mol, respectively. The performance of this level was verified by using G2 and G2(MP2) methods in Si2H6. According to our theoretical results, the ΔG(298 K) values were marginally greater than the ΔE(0 K) values in Si2F6 and Si2Me6 due to the contribution of the entropy. In Si2H6 the ΔE(0 K) and ΔG(298 K) values were coincidently similar due to a cancellation of two opposing contributions between zero-point and thermal vibrational energies, and entropies. Our calculated ΔG(298 K) values were in good agreement with experimental values published recently. In addition, we also performed MM3 calculations on Si2H6 and Si2Me6. MM3 calculated rotational barriers and thermodynamic properties were compared with high level ab initio results. Based on this comparison, MM3 calculations reproduced high level ab initio results in rotational barriers and thermodynamic properties of Si2H6 derivatives including vibrational energies and entropies, although large errors exist in some vibrational frequencies. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1523–1533, 1997  相似文献   

17.
Ab initio calculations have been performed on a series of complexes formed between halogen-containing molecules and ammonia to gain a deeper insight into the nature of halogen bonding. It appears that the dihalogen molecules form the strongest halogen-bonded complexes with ammonia, followed by HOX; the charge-transfer-type contribution has been demonstrated to dominate the halogen bonding in these complexes. For the complexes involving carbon-bound halogen molecules, our calculations clearly indicate that electrostatic interactions are mainly responsible for their binding energies. Whereas the halogen-bond strength is significantly enhanced by progressive fluorine substitution, the substitution of a hydrogen atom by a methyl group in the CH(3)X...NH(3) complex weakened the halogen bonding. Moreover, remote substituent effects have also been noted in the complexes of halobenzenes with different para substituents. The influence of the hybridization state of the carbon atom bonded to the halogen atom has also been examined and the results reveal that halogen-bond strengths decrease in the order HC triple bond CX > H(2)C=CHX approximately O=CHX approximately C(6)H(5)X > CH(3)X. In addition, several excellent linear correlations have been established between the interaction energies and both the amount of charge transfer and the electrostatic potentials corresponding to an electron density of 0.002 au along the R-X axis; these correlations provide good models with which to evaluate the electron-accepting abilities of the covalently bonded halogen atoms. Finally, some positively charged halogen-bonded systems have been investigated and the effect of the charge has been discussed.  相似文献   

18.
In this study we compare the binding energies of polycoordinated complexes of Zn2+ within cavities composed of model “hard” (H2O, OH) or “soft” (CH3SH, CH3S) ligands. Ab initio supermolecule computations are performed at the HF and MP2 levels using extended basis sets to determine the binding energies and their components as a function of: the number of ligands, ranging from three to six; the net charge of the cavity; and the “hard” versus “soft” character of the ligands. These ab initio computations are used to test the reliability of the SIBFA molecular mechanics procedure, originally formulated and calibrated on the basis of ab initio computations, for such charged systems. The SIBFA intermolecular interaction energies match the corresponding ab initio values using a coreless effective potential split‐valence basis set with a relative error of ≤3%. Extensions to binuclear Zn2+ complexes, such as those that occur in the Zn‐binding sites of Gal4 and β‐lactamase proteins, are performed to test the applicability of the methodology for such systems. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 1011–1039, 2000  相似文献   

19.
To clarify the nature of five-center, six-electron (5c-6e) C(2)Z(2)O interactions, atoms-in-molecules (AIM) analysis has been applied to an anthraquinone, 1,8-(MeZ)(2)ATQ (1 (Z=Se), 2 (Z=S), and 3 (Z=O)), and a 9-methoxyanthracene system, 9-MeO-1,8-(MeZ)(2)ATC (4 (Z=Se), 5 (Z=S), and 6 (Z=O)), as well as 1-(MeZ)ATQ (7 (Z=Se), 8 (Z=S), and 9 (Z=O)) and 9-MeO-1-(MeZ)ATC (10 (Z=Se), 11 (Z=S), and 12 (Z=O)). The total electronic energy density (H(b)(r(c))) at the bond critical points (BCPs), an appropriate index for weak interactions, has been examined for 5c-6e C(2)Z(2)O and 3c-4e CZO interactions of the n(p)(O)sigma*(Z--C) type in 1-12. Some hydrogen-bonded adducts were also re-examined for convenience of comparison. The total electronic energy densities varied in the following order: OO (3: H(b)(r(c))=0.0028 au)=OO (6: 0.0028 au)>OO (9: 0.0025 au)> or =NNHF (0.0024 au)> or =OO (12: 0.0023 au)>H(2)OHOH (0.0015 au)>SO (8: 0.0013 au)=SO (2: 0.0013 au)> or =SO (11: 0.0012 au)=SO (5: 0.0012 au)>HFHF (0.0008 au)=SeO (10: 0.0008 au)=SeO (4: 0.0008 au)> or =SeO (1: 0.0007 au)> or =SeO (7: 0.0006 au)>HCNHF (-0.0013 au). H(b)(r(c)) values for SO were predicted to be smaller than the hydrogen bond of H(2)OHOH and H(b)(r(c)) values for SeO are very close to or slightly smaller than that for HFHF in both the ATQ and 9-MeOATC systems. In the case of Z=Se and S, H(b)(r(c)) values for 5c-6e C(2)Z(2)O interactions are essentially equal to those for 3c-4e CZO if Z is the same. The results demonstrate that two n(p)(O)sigma*(Z--C) 3c-4e interactions effectively connect through the central n(p)(O) orbital to form the extended hypervalent 5c-6e system of the sigma*(C--Z)n(p)(O)sigma*(Z--C) type for Z=Se and S in both systems. Natural bond orbital (NBO) analysis revealed that n(s)(O) also contributes to some extent. The electron charge densities at the BCPs, NBO analysis, and the total energies calculated for 1-12, together with the structural changes in the PhSe derivatives, support the above discussion.  相似文献   

20.
1INTRODUCTIONBenzotrifuroxan(BTF)isapowerful,hydrogen freandrelativelysensitiveex plosive.Sincethiscompoundwasfirstprepared,i...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号