首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
钟震  路航  任天斌 《化学进展》2014,26(12):1930-1941
纳米银(Ag NPs)由于其独特的物理、化学和生物学特性备受研究人员的关注.纳米银应用性能除了受到粒子尺寸、分布、纯度等因素影响,还与纳米银的形状密切相关.纳米银的形状对纳米银的抗菌性能、光学性能以及聚合物纳米银复合材料的综合性能都会产生重要影响.纳米银的形状控制合成可以进一步发挥聚合物纳米银复合材料的性能潜力.因此,不断发展纳米银新的合成方法,研究纳米银形状控制的机理就显得尤为重要.本文综述了纳米银合成方法和不同形状纳米银的最新研究进展,合成方法重点介绍了辐射法、激光烧蚀法、电化学法、光化学法和生物合成法,评述了这些方法的优缺点;同时从模板法、动力学、热力学以及氧化刻蚀4个方面介绍了纳米银形状控制的机理.介绍了聚合物纳米银复合材料的研究进展.  相似文献   

2.
以葡聚糖-乙二胺聚合物为载体制备纳米银.首先合成葡聚糖-乙二胺聚合物,并用紫外光谱红外光谱对聚合物进行表征;该聚合物与硝酸银反应生成葡聚糖-乙二胺聚合物-银配合物,再通过化学还原或光化学还原法使配合物中的银离子转变成单质银纳米粒,以透射电子显微镜激光纳米测定仪对制备的纳米银进行测定.结果表明制备出了粒径为23.1nm的纳米单质银.以葡聚糖-乙二胺聚合物为载体制备纳米银的方法是可行的.  相似文献   

3.
纳米银在细菌纤维素凝胶膜中的原位合成及性能表征   总被引:1,自引:0,他引:1  
在细菌纤维素纳米纤维网络结构中采用吐伦试剂与含醛基化合物原位反应生成纳米银颗粒, 制备了纳米银/细菌纤维素(n-Ag/BC)复合凝胶膜, 研究了不同反应条件对复合材料的银含量、 化学结构和晶体结构的影响以及n-Ag/BC的微观结构和纳米银在纤维素网络中的存在形态; 探讨了纳米银颗粒在纤维素网络中的形成机理; 采用伤口常见细菌之一金黄色葡萄球菌测试了n-Ag/BC的抑菌性能; 将n-Ag/BC与胎鼠表皮细胞共培养考察了材料的生物相容性. 研究结果表明, 在细菌纤维素纳米网络结构中可生成直径约为几十纳米的单质纳米银粒子; n-Ag/BC的银含量随着吐伦试剂浓度的增加而增加, 同时银含量还取决于含醛基化合物的用量; 原位反应生成纳米银粒子后细菌纤维素的晶型和结晶度没有发生变化; 纳米银颗粒在细菌纤维素纳米网络结构的交叉处生成, 复合材料n-Ag/BC对金黄色葡萄球菌的抑菌率达到99%以上, 不影响细胞的增殖和分化过程, 具有良好的生物相容性, 是一种有广阔应用前景的创伤修复抗感染材料.  相似文献   

4.
超声引发无皂乳液聚合制备纳米银/PAAEM复合材料及其表征   总被引:1,自引:0,他引:1  
在不使用气体保护及乳化剂的条件下,超声辐射引发无皂乳液聚合双原位合成纳米银/聚乙酰乙酸基甲基丙烯酸乙酯(PAAEM)复合材料。并通过XRD、FTIR、TEM、HRTEM、XPS和TG等分析方法对其进行表征。结果表明:纳米银粒子具有面心立方结构和球形或近球形形貌,且较均匀地分散在聚合物基体中;纳米银粒子与基体之间的相互作用是纳米银与基体中乙酰乙酸基的羰基氧原子配位所产生的;而且纳米银粒子对基体PAAEM的热学性能有很大影响。  相似文献   

5.
郭世伟  苑春刚 《化学进展》2015,27(12):1841-1850
银纳米粒子由于其特殊的物理化学性质而被广泛应用,但其易团聚,影响实际使用效果。银纳米粒子可被负载到稳定载体上,获得具有优异性能的纳米复合材料,克服了团聚等缺限,大大改善应用效果和效率。采用静电纺丝技术制备银修饰纳米复合纤维材料是其中一种有效的方法,近年来在复合材料制备领域受到了广泛关注。本文综述了最近几年关于静电纺丝制备负载银纳米颗粒纤维复合材料及其应用的研究进展,重点介绍了静电纺丝制备负载银纳米纤维过程中纳米银的生成和负载方法,总结了有机主体和无机主体两种纺丝纤维的制备研究进展,详细介绍了负载银纺丝纤维在几个重要领域的应用及研究方向。  相似文献   

6.
聚合物存在下纳米银复合材料的制备与表征   总被引:1,自引:0,他引:1  
以聚丙烯腈聚乙二醇嵌段共聚物PAN-b-PEG-b-PAN为稳定剂, 在超声辐照下成功地制备了分散性较好、尺寸均匀的纳米银颗粒. 用X射线衍射(XRD)、红外光谱(FTIR)、透射电镜(TEM)、紫外-可见吸收光谱(UV-Vis)和热分析(TGA)等对制备的纳米银复合材料进行了表征. 红外结果表明超声辐照并没有破坏聚合物的链结构. 聚合物的引入, 对纳米银颗粒起到了很好的分散保护作用. 用低浓度的硝酸银溶液, 得到粒径较小的纳米银颗粒; 随着硝酸银浓度增大, 纳米银颗粒粒径也增大. 而聚合物的浓度增大时, 所得银纳米颗粒粒径减小. 对银纳米颗粒的形成机理进行了讨论.  相似文献   

7.
利用端羟基超支化聚胺-酯(HBP3-OH)与马来酸酐的酯化反应,合成了含双键的超支化聚胺-酯(HBP3-MA),并用红外光谱和核磁共振光谱对HBP3-MA进行了表征.将HBP3-MA作为改性剂,液体硅橡胶为基体,镀银铜粉为导电填料,制备了改性硅橡胶导电复合材料.HBP3-MA参与到液体硅橡胶的固化,采用示差扫描量热仪(DSC)对复合体系的固化条件进行了研究.采用原位还原法在复合体系中生成纳米银,利用透射电子显微镜(TEM)、扫描电子显微镜(SEM)对银纳米粒子的形貌和复合体系的结构进行了表征,探讨了纳米粒子增强复合物体系导电性的机理,即银纳米粒子具有低温烧结的特性,固化时可在镀银铜粉表面烧结,降低了镀银铜粉之间的接触电阻.最后,对导电复合材料的导电性能和粘结性能进行了研究.研究发现,当醋酸银用量为4.4份时,导电复合材料的体积电阻率和剪切强度均达到最佳值,分别为3.6×10-3Ω·cm和0.32 MPa.  相似文献   

8.
夏年鑫  蔡玉荣  姚菊明 《化学学报》2011,69(11):1321-1326
利用基于天然生物高分子的绿色环保法制备纳米贵金属材料是当今纳米技术发展的一个重要方向之一. 利用丝胶蛋白(SS)为还原剂和分散剂合成了纳米银颗粒, 利用紫外-可见(UV-Vis)光谱、X射线衍射(XRD)、透射电镜(TEM)等研究了反应温度、pH值、SS/Ag物质的量比对反应速率和合成的纳米银粒子形貌的影响. 实验结果表明, 利用本方法可以合成尺寸均匀且分散性良好的球形纳米银粒子, 且随着反应温度和溶液pH值的逐渐升高, 反应速率随之加快, 合成的纳米银粒子的粒径逐渐变小, 而SS/Ag物质的量比的变化主要对纳米银粒子的尺寸有影响.  相似文献   

9.
姚雪  张亚会  吕菊波  徐慧  王磊 《化学通报》2016,79(6):496-503
纳米银/高聚物复合材料以其优异的物理化学性质,在近几年得到快速发展。而其在高效抑菌灭菌方面的突出性更是引起科研人员的广泛关注。因此,纳米银/高聚物复合材料的合成方式和抑菌性能具有很大应用研究价值。本文综述了近年来纳米银/高聚物复合材料的制备方法和抑菌效果的比较,并展望了纳米银/高聚物的发展方向及应用前景。  相似文献   

10.
采用一种快速高效的光诱导法合成了纳米银三角片,系统地考察了光照时间、柠檬酸钠用量、OH-用量和合成方法对银纳米三角片的合成产率、尖端形貌及其稳定性的影响。研究结果表明,采用光诱导法合成纳米银三角片的最优条件为光照时间3.5 h,反应物物质的量之比n_(AgNO_3)∶n_(Na_3C_6H_5O_7)∶n_(NaBH_4)=1∶10∶0.8,OH-浓度0.125 mmol·L~(-1),合成出粒径70~80 nm的纳米银三角片,透射电镜和紫外可见分光光度的表征结果表明:光诱导法相对于直接化学还原法制得的纳米银三角片具有较好的微观形态、产率及稳定性。抗菌测试结果表明三角片形态的纳米银比球型颗粒形态的纳米银具有更优异的抗菌性能。  相似文献   

11.

Using electron transfer reaction and free radical polymerization processes a series of triglyceride oil based polymer‐silver nanocomposites were successfully prepared. The whole process was divided into two simultaneous stages; (i) copolymerization of macromonomers obtained from partial glycerides with styrene and (ii) the reduction of silver nitrate to metallic silver nano particles with radicals stemming from the thermolysis of 2,2′‐azoisobutyronitrile (AIBN). Nanocomposites were characterized by TEM and TGA. The obtained polymer nanocomposite was also examined in view of antibacterial effect against Gram‐positive, Gram‐negative, and Spore forming bacteria. It was demonstrated that nanocomposite samples exhibited an antibacterial effect against these bacteria. Film properties of the samples as potential coating material were also studied. Nanocomposite samples showed better film properties than that of the polymer without silver nanoparticles.  相似文献   

12.
The optical properties of silver nanoparticles embedded in poly(methylmethacrylate) (PMMA) was investigated as well as the influence of silver nanoparticles on the thermal properties of polymer matrix. The average size and particle size distribution of silver nanoparticles was determined using transmission electron microscopy. The obtained transparent nanocomposite films were optically characterized using UV-Vis and FTIR spectroscopy. Thermal stability of polymer matrix was improved upon incorporation of small amount of silver nanoparticles. Also, silver nanoparticles have pronounced effect on thermo-oxidative stability of PMMA matrix. The glass transition temperatures of nanocomposites are lower compared to the pure polymer.  相似文献   

13.
This Minireview systematically examines optical properties of silver nanoparticles as a function of size. Extinction, scattering, and absorption cross-sections and distance dependence of the local electromagnetic field, as well as the quadrupolar coupling of 2D assemblies of such particles are experimentally measured for a wide range of particle sizes. Such measurements were possible because of the development of a novel synthetic method for the size-controlled synthesis of chemically clean, highly crystalline silver nanoparticles of narrow size distribution. The method and its unique advantages are compared to other methods for synthesis of metal nanoparticles. Synthesis and properties of nanocomposite materials using these and other nanoparticles are also described. Important highlights in the history of the field of metal nanoparticles as well as an examination of the basic principles of plasmon resonances are included.  相似文献   

14.
Novel nanocomposites consisting of genipin cross‐linked chitosan (GC), poly(ethylene glycol) (PEG), and silver nanoparticles were prepared for such biomedical applications as the wound‐healing materials. Various amounts of silver nanoparticles were dispersed in the GC/PEG hydrogel matrix without severe aggregation. The effects of composition and silver nanoparticles on the physico‐chemical properties of samples were evaluated by infrared analysis, contact angle measurements, and swelling tests. The GC/PEG/Ag nanocomposite showed a pH‐sensitive swelling behavior. The surface hydrophilicity of GC/PEG/Ag nanocomposites was improved with the increase of silver nanoparticle content. L929 cell attachment was improved in the presence of silver nanoparticles. The antimicrobial function was assessed for the GC/PEG/Ag nanocomposites containing the silver content over 100 ppm. The silver nanoparticles had the dual functions of reinforcing structural stability and enhancing antimicrobial activity of GC/PEG/Ag nanocomposites. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The crucial step in the production of solid nanocomposites is the uniform embedding of nanoparticles into the polymer matrix, since the colloidal properties or specific physical properties are very sensitive to particle dispersion within the nanocomposite. Therefore, we studied a laser-based generation method of a nanocomposite which enables us to control the agglomeration of nanoparticles and to increase the single particle dispersion within polyurethane. For this purpose, we ablated targets of silver and copper inside a polymer-doped solution of tetrahydrofuran by a picosecond laser (using a pulse energy of 125 μJ at 33.3 kHz repetition rate) and hardened the resulting colloids into solid polymers. Electron microscopy of these nanocomposites revealed that primary particle size, agglomerate size and particle dispersion strongly depend on concentration of the polyurethane added before laser ablation. 0.3 wt% polyurethane is the optimal polymer concentration to produce nanocomposites with improved particle dispersion and adequate productivity. Lower polyurethane concentration results in agglomeration whereas higher concentration reduces the production rate significantly. The following evaporation step did not change the distribution of the nanocomposite inside the polyurethane matrix. Hence, the in situ coating of nanoparticles with polyurethane during laser ablation enables simple integration into the structural analogue polymer matrix without additives. Furthermore, it was possible to injection mold these in situ-stabilized nanocomposites without affecting particle dispersion. This clarifies that sufficient in situ stabilization during laser ablation in polymer solution is able to prevent agglomeration even in a hot polymer melt.  相似文献   

16.
The nanocomposites were prepared using melt intercalation method and the effects of the processing conditions on silver nanoparticles dispersion were investigated by transmission electron microscopy. Non-isothermal crystallization kinetics of virgin polypropylene (PP) and its nanocomposites have been evaluated using differential scanning calorimetric technique. The non-isothermal crystallization melt data were analyzed using macro kinetics equation with the help of Avrami, Malkin, and Mo’s models. The crystallization rate increased with the increasing of cooling rates for virgin PP and nanocomposite, but the crystallization of nanocomposite was faster than that of PP at a given cooling rate. The activation energy for non-isothermal crystallization of virgin polymer and nanocomposites based on Kissinger method has been determined to be 186 and 211 kJ/mol, respectively. Transmission electron microscopy analysis reveals balanced dispersion and presence of some silver nanoparticles aggregates, which act as a heterogeneous nucleating agent during the crystallization of the nanocomposite.  相似文献   

17.
Surface modified silver nanoparticles dispersed in chloroform were encapsulated in poly(methylmethacrylate) (PMMA) by in-situ radical polymerization of methyl methacrylate initiated by 2,2′-azobisisobutyronitrile. The particle size distribution of colloidal silver nanoparticles was determined using transmission electron microscopy. The obtained transparent nanocomposite films were characterized using UV-vis spectroscopy, 1H NMR spectroscopy and gel permeation chromatography. Effective medium Maxwell-Garnett theory was used in order to explain optical properties of nanocomposite films taking into account inhomogeneous spatial distribution of silver nanoparticles in PMMA matrix. The influence of the silver nanoparticles on the thermal properties of the PMMA matrix was investigated using thermo-gravimetric analysis and differential scanning calorimetry. Thermo-oxidative stability of the PMMA in the presence of low content of inorganic phase is significantly improved. The glass transition temperatures of nanocomposites are slightly lower compared to the pure polymer.  相似文献   

18.
Using polymer hydrogels and nanocomposites hydrogels still promising materials for many applications. Polyvinyl pyrrolidone (PVP) has been used with various polymers synthetic and natural for different applications. In this study PVP and hydroxyl ethyl methacrylate (HEMA) copolymer hydrogels were prepared by the aid of gamma radiation and the PVP/HEMA nanocomposite hydrogels were obtained by in situ adsorption and reduction method of iron salts and silver nitrates (AgNO3) to form PVP/HEMA-Fe3O4 and PVP/HEMA-Ag nanocomposites. The prepared hydrogels and the formed nanoparticles were studied by various techniques; FTIR, TEM, SEM and also the gel content and swelling behavior were evaluated. The prepared hydrogels and nanocomposites hydrogels were examined as drug delivery systems for Ciprofloxacin HCl as model drug. The PVP/HEMA-Fe3O4 nanocomposite gave the suitable load and release behavior towards Ciprofloxacin HCl.  相似文献   

19.
Utilization of metallic nanoparticles in various biotechnological and medical applications represents one of the most extensively investigated areas of the current materials science. These advanced applications require the appropriate chemical functionalization of the nanoparticles with organic molecules or their incorporation in suitable polymer matrices. The intensified interest in polymer nanocomposites with silver nanoparticles is due to the high antimicrobial effect of nanosilver as well as the unique characteristics of polymers which include their excellent structural uniformity, multivalency, high degree of branching, miscellaneous morphologies and architectures, and highly variable chemical composition. In this review, we explore several aspects of antimicrobial polymer silver nanocomposites, giving special focus to the critical analysis of the reported synthetic routes including their advantages, drawbacks, possible improvements, and real applicability in antibacterial and antifungal therapy. A special attention is given to "green" synthetic routes exploiting the biopolymeric matrix and to the methods allowing preparing magnetically controllable antimicrobial polymers for targeting to an active place. The controversial mechanism of the action of silver against bacteria, fungi and yeasts as well as perspectives and new applications of silver polymeric nanocomposites is also briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号