首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Discriminating outer membrane proteins from other folding types of globular and membrane proteins is an important problem both for detecting outer membrane proteins from genomic sequences and for the successful prediction of their secondary and tertiary structures. In this work, we have systematically analyzed the distribution of amino acid residues in the sequences of globular and outer membrane proteins. We observed that the occurrence of two neighboring aliphatic and polar residues is significantly higher in outer membrane proteins than in globular proteins. From the information about the dipeptide composition we have devised a statistical method for discriminating outer membrane proteins from other globular and membrane proteins. Our approach correctly picked up the outer membrane proteins with an accuracy of 95% for the training set of 337 proteins. On the other hand, our method has correctly excluded the globular proteins at an accuracy of 79% in a non-redundant dataset of 674 proteins. Furthermore, the present method is able to correctly exclude alpha-helical membrane proteins up to an accuracy of 87%. These accuracy levels are comparable to other methods in the literature. The influence of protein size and structural class for discrimination is discussed.  相似文献   

2.
Prediction of membrane spanning segments in β‐barrel outer membrane proteins (OMP) and their topology is an important problem in structural and functional genomics. In this work, we propose a method based on radial basis networks for predicting the number of β‐strands in OMPs and identifying their membrane spanning segments. Our method showed a leave‐one‐out cross validation accuracy of 96% in a set of 28 OMPs, which have the range of 8–22 β‐strand segments. The β‐strand segments in OMPs and the residues in membrane spanning segments are correctly predicted with the accuracy of 96% and 87%, respectively. We have developed a web server, TMBETAPRED‐RBF for predicting the transmembrane β‐strands from amino acid sequence and it is available at http://rbf.bioinfo.tw/~sachen/tmrbf.html . We suggest that our method could be an effective tool for predicting the membrane spanning regions and topology of β‐barrel membrane proteins. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

3.
We have developed a novel approach for dissecting transmembrane beta-barrel proteins (TMBs) in genomic sequences. The features include (i) the identification of TMBs using the preference of residue pairs in globular, transmembrane helical (TMH) and TMBs, (ii) elimination of globular/TMH proteins that show sequence identity of more than 70% for the coverage of 80% residues with known structures, (iii) elimination of globular/TMH proteins that have sequence identity of more than 60% with known sequences in SWISS-PROT, and (iv) exclusion of TMH proteins using SOSUI, a prediction system for TMH proteins. Our approach picked up 7% TMBs in all the considered genomes. The comparison between the identified TMBs in E. coli genome and available experimental data demonstrated that the new approach could correctly identify all the 11 known TMBs, whose crystal structures are available. Further, it revealed the presence of 19 TMBs, homology with known structures, 60 TMBs similar to well annotated sequences, and 54 TMBs that have high sequence similarity with Escherichia coli beta-barrel proteins deposited in Transport Classification Database (TCDB). Interestingly, the present approach identified TMBs from all 15 families in TCDB. In human genome, the occurrence of TMBs varies from 0 to 3% in different chromosomes. We suggest that our approach could lead to a step forward in the advancement of structural and functional genomics.  相似文献   

4.
beta-barrel membrane proteins perform a variety of functions, such as mediating non-specific, passive transport of ions and small molecules, selectively passing the molecules like maltose and sucrose and are involved in voltage dependent anion channels. Understanding the structural features of beta-barrel membrane proteins and detecting them in genomic sequences are challenging tasks in structural and functional genomics. In this review, with the survey of experimentally known amino acid sequences and structures, the characteristic features of amino acid residues in beta-barrel membrane proteins and novel parameters for understanding their folding and stability will be described. The development of statistical methods and machine learning techniques for discriminating beta-barrel membrane proteins from other folding types of globular and membrane proteins will be explained along with their relative importance. Further, different methods including hydrophobicity profiles, rule based approach, amino acid properties, neural networks, hidden Markov models etc. for predicting membrane spanning segments of beta-barrel membrane proteins will be discussed. In addition, the applications of discrimination techniques for detecting beta-barrel membrane proteins in genomic sequences will be outlined. In essence, this comprehensive review would provide an overall picture about beta-barrel membrane proteins starting from the construction of datasets to genome-wide applications.  相似文献   

5.
The growth and spread of drug resistance in bacteria have been well established in both mankind and beasts and thus is a serious public health concern. Due to the increasing problem of drug resistance, control of infectious diseases like diarrhea, pneumonia etc. is becoming more difficult. Hence, it is crucial to understand the underlying mechanism of drug resistance mechanism and devising novel solution to address this problem. Multidrug And Toxin Extrusion (MATE) proteins, first characterized as bacterial drug transporters, are present in almost all species. It plays a very important function in the secretion of cationic drugs across the cell membrane. In this work, we propose SVM based method for prediction of MATE proteins. The data set employed for training consists of 189 non-redundant protein sequences, that are further classified as positive (63 sequences) set comprising of sequences from MATE family, and negative (126 sequences) set having protein sequences from other transporters families proteins and random protein sequences taken from NCBI while in the test set, there are 120 protein sequences in all (8 in positive and 112 in negative set). The model was derived using Position Specific Scoring Matrix (PSSM) composition and achieved an overall accuracy 92.06%. The five-fold cross validation was used to optimize SVM parameter and select the best model. The prediction algorithm presented here is implemented as a freely available web server MATEPred, which will assist in rapid identification of MATE proteins.  相似文献   

6.
Many bacterial outer membrane proteins (OMPs) are missing from two-dimensional (2-D) gel proteome maps. Recently, we developed a technique for 2-D electrophoresis (2-DE) of Escherichia coli OMPs using alkaline pH incubation for isolation of OMPs, followed by improved solubilization conditions for array by 2-DE using immobilized pH gradients. In this report, we expanded our study, examining protein components from the outer membranes of two enteric bacteria, Salmonella typhimurium and Klebsiella pneumoniae (also known as Klebsiella aerogenes), as well as the unrelated, free-living alpha-proteobacteria Caulobacter crescentus. Patterns of OMPs expression appeared remarkably conserved between members of the Enterobacteriaceae, while C. crescentus was unique, displaying a greater number of clusters of higher-molecular-weight proteins (>80 kDa). Peptide mass fingerprinting (PMF) was used for protein identification, and despite matching across-species boundaries, proved useful for first-pass protein assignment of enteric OMPs. In contrast, identification of C. crescentus OMPs was successful only when searching against its recently completed genome. For all three microorganisms examined, the majority of proteins identified on the 2-D gel appear localized to the outer membrane, a result consistent with our previous finding in Escherichia coli. In addition, we discuss some of the benefits and limitations of PMF in cross-species searching.  相似文献   

7.
Position-Specific Scoring Matrix (PSSM) is an excellent feature extraction method that was proposed early in protein classifying prediction, but within the restriction of feature shape in PSSM, researchers make a lot attempts to process it so that PSSM can be input to the traditional machine learning algorithms. These processes drop information provided by PSSM in a way thus the feature representation is limited. Moreover, the high-dimensional feature representation of PSSM makes it incompatible with other feature extraction methods. We use the PSSM as the input of Recurrent Neural Network without any post-processing, the amino acids in protein sequences are regarded as time step in RNN. This way takes full advantage of the information that PSSM provides. In this study, the PSSM is input to the model directly and the internal information of PSSM is fully utilized, we propose an end-to-end solution and achieve state-of-the-art performance. Ultimately, the exploration of how to combine PSSM with traditional feature extraction methods is carried out and achieve slightly improved performance. Our network architecture is implemented in Python and is available at https://github.com/YellowcardD/RNN-for-membrane-protein-types-prediction.  相似文献   

8.
Computational tools can bridge the gap between sequence and protein 3D structure based on the notion that information is to be retrieved from the databases and that knowledge-based methods can help in approaching a solution of the protein-folding problem. To this aim our group has implemented neural network-based predictors capable of performing with some success in different tasks, including predictions of the secondary structure of globular and membrane proteins, the topology of membrane proteins and porins and stable alpha-helical segments suited for protein design. Moreover we have developed methods for predicting contact maps in proteins and the probability of finding a cysteine in a disulfide bridge, tools which can contribute to the goal of predicting the 3D structure starting from the sequence (the so called ab initio prediction). All our predictors take advantage of evolution information derived from the structural alignments of homologous (evolutionary related) proteins and taken from the sequence and structure databases. When it is necessary to build models for proteins of unknown spatial structure, which have very little homology with other proteins of known structure, non-standard techniques need to be developed and the tools for protein structure predictions may help in protein modeling. The results of a recent simulation performed in our lab highlights the role of high performing computing technology and of tools of computational biology in protein modeling and peptidomimetic design.  相似文献   

9.
Routine structure prediction of new folds is still a challenging task for computational biology. The challenge is not only in the proper determination of overall fold but also in building models of acceptable resolution, useful for modeling the drug interactions and protein-protein complexes. In this work we propose and test a comprehensive approach to protein structure modeling supported by sparse, and relatively easy to obtain, experimental data. We focus on chemical shift-based restraints from NMR, although other sparse restraints could be easily included. In particular, we demonstrate that combining the typical NMR software with artificial intelligence-based prediction of secondary structure enhances significantly the accuracy of the restraints for molecular modeling. The computational procedure is based on the reduced representation approach implemented in the CABS modeling software, which proved to be a versatile tool for protein structure prediction during the CASP (CASP stands for critical assessment of techniques for protein structure prediction) experiments (see http://predictioncenter/CASP6/org). The method is successfully tested on a small set of representative globular proteins of different size and topology, including the two CASP6 targets, for which the required NMR data already exist. The method is implemented in a semi-automated pipeline applicable to a large scale structural annotation of genomic data. Here, we limit the computations to relatively small set. This enabled, without a loss of generality, a detailed discussion of various factors determining accuracy of the proposed approach to the protein structure prediction.  相似文献   

10.

Computational tools can bridge the gap between sequence and protein 3D structure based on the notion that information is to be retrieved from the databases and that knowledge-based methods can help in approaching a solution of the protein-folding problem. To this aim our group has implemented neural network-based predictors capable of performing with some success in different tasks, including predictions of the secondary structure of globular and membrane proteins, the topology of membrane proteins and porins and stable f -helical segments suited for protein design. Moreover we have developed methods for predicting contact maps in proteins and the probability of finding a cysteine in a disulfide bridge, tools which can contribute to the goal of predicting the 3D structure starting from the sequence (the so called ab initio prediction). All our predictors take advantage of evolution information derived from the structural alignments of homologous (evolutionary related) proteins and taken from the sequence and structure databases. When it is necessary to build models for proteins of unknown spatial structure, which have very little homology with other proteins of known structure, non-standard techniques need to be developed and the tools for protein structure predictions may help in protein modeling. The results of a recent simulation performed in our lab highlights the role of high performing computing technology and of tools of computational biology in protein modeling and peptidomimetic design.  相似文献   

11.
Signal peptides play a crucial role in various biological processes, such as localization of cell surface receptors, translocation of secreted proteins and cell–cell communication. However, the amino acid mutation in signal peptides, also called non-synonymous single nucleotide polymorphisms (nsSNPs or SAPs) may lead to the loss of their functions. In the present study, a computational method was proposed for predicting deleterious nsSNPs in signal peptides based on random forest (RF) by incorporating position specific scoring matrix (PSSM) profile, SignalP score and physicochemical properties. These features were optimized by the maximum relevance minimum redundancy (mRMR) method. Then, a cost matrix was used to minimize the effect of the imbalanced data classification problem that usually occurred in nsSNPs prediction. The method achieved an overall accuracy of 84.5% and the area under the ROC curve (AUC) of 0.822 by Jackknife test, when the optimal subset included 10 features. Furthermore, on the same dataset, we compared our predictor with other existing methods, including R-score-based method and D-score-based methods, and the result of our method was superior to those of the two methods. The satisfactory performance suggests that our method is effective in predicting the deleterious nsSNPs in signal peptides.  相似文献   

12.
Prediction of transmembrane beta-strands in outer membrane proteins (OMP) is one of the important problems in computational chemistry and biology. In this work, we propose a method based on neural networks for identifying the membrane-spanning beta-strands. We introduce the concept of "residue probability" for assigning residues in transmembrane beta-strand segments. The performance of our method is evaluated with single-residue accuracy, correlation, specificity, and sensitivity. Our predicted segments show a good agreement with experimental observations with an accuracy level of 73% solely from amino acid sequence information. Further, the predictive power of N- and C-terminal residues in each segments, number of segments in each protein, and the influence of cutoff probability for identifying membrane-spanning beta-strands will be discussed. We have developed a Web server for predicting the transmembrane beta-strands from the amino acid sequence, and the prediction results are available at http://psfs.cbrc.jp/tmbeta-net/.  相似文献   

13.
Unlike all-helices membrane proteins, beta-barrel membrane proteins can not be successfully discriminated from other proteins, especially from all-beta soluble proteins. This paper performs an analysis on the amino acid composition in membrane parts of 12 beta-barrel membrane proteins versus beta-strands of 79 all-beta soluble proteins. The average and variance of the amino acid composition in these two classes are calculated. Amino acids such as Gly, Asn, Val that are most likely associated with classification are selected based on Fishers discriminant ratio. A linear classifier built with these selected amino acids composition in observed beta-strands achieves 100% classification accuracy for 12 membrane proteins and 79 soluble proteins in a four-fold cross-validation experiment. Since at present the accuracy of secondary structure prediction is quite high, a promising method to identify beta-barrel membrane proteins is presented based on the linear classifier coupled with predicted secondary structure. Applied to 241 beta-barrel membrane proteins and 3855 soluble proteins with various structures, the method achieves 85.48% (206/241) sensitivity and 92.53% specificity (3567/3855).  相似文献   

14.
A new method has been developed for prediction of transmembrane helices using support vector machines. Different coding schemes of protein sequences were explored, and their performances were assessed by crossvalidation tests. The best performance method can predict the transmembrane helices with sensitivity of 93.4% and precision of 92.0%. For each predicted transmembrane segment, a score is given to show the strength of transmembrane signal and the prediction reliability. In particular, this method can distinguish transmembrane proteins from soluble proteins with an accuracy of approximately 99%. This method can be used to complement current transmembrane helix prediction methods and can be used for consensus analysis of entire proteomes. The predictor is located at http://genet.imb.uq.edu.au/predictors/SVMtm.  相似文献   

15.
16.
Salmonella enterica serovar Gallinarum (SG) is an important pathogen that causes fowl typhoid in chickens. In order to investigate SG outer membrane proteins (OMPs) as potential vaccine candidate proteins, we established a proteomic map and database of antigenic SG‐OMPs. A total of 174 spots were detected by 2DE. Twenty‐two antigen‐reactive spots were identified as nine specific proteins using PMF. OmpA was the most abundant protein among all of the identified OMPs, and it exhibited seven protein species. We conducted Western blot analysis for the SG‐OMPs in order to determine which proteins were cross‐reactive to the serovars Salmonella Enteritidis, Salmonella Typhimurium, and SG. Our results indicated that OmpA was considered to be an antigenic cross‐reactive protein among the three serovars. This study sheds new light on our understanding of cross‐protection among Salmonella serovars.  相似文献   

17.
Transmembrane protein topology prediction methods play important roles in structural biology, because the structure determination of these types of proteins is extremely difficult by the common biophysical, biochemical and molecular biological methods. The need for accurate prediction methods is high, as the number of known membrane protein structures fall far behind the estimated number of these proteins in various genomes. The accuracy of these prediction methods appears to be higher than most prediction methods applied on globular proteins, however it decreases slightly with the increasing number of structures. Unfortunately, most prediction algorithms use common machine learning techniques, and they do not reveal why topologies are predicted with such a high success rate and which biophysical or biochemical properties are important to achieve this level of accuracy. Incorporating topology data determined so far into the prediction methods as constraints helps us to reach even higher prediction accuracy, therefore collection of such topology data is also an important issue.  相似文献   

18.
Prediction methods of structural features in 1D represent a useful tool for the understanding of folding, classification, and function of proteins, and, in particular, for 3D structure prediction. Among the structural aspects characterizing a protein, solvent accessibility has received great attention in recent years. The available methods proposed for predicting accessibility have never considered the combination of the results deriving from different methods to construct a consensus prediction able to provide more reliable results. A consensus approach that increases prediction accuracy using three high-performance methods is described. The results of our method for three different protein data sets show that up to 3.0% improvement in prediction accuracy of solvent accessibility may be obtained by a consensus approach. The improvement also extends to the correlation coefficient. Application of our consensus approach to the accessibility prediction using only three prediction methods gives results better than single methods combined for consensus formation. Currently, the scarce availability of predictors with similar parameters defining solvent accessibility hinders the testing of other methods in our consensus procedure.  相似文献   

19.
BackgroundDiscover possible Drug Target Interactions (DTIs) is a decisive step in the detection of the effects of drugs as well as drug repositioning. There is a strong incentive to develop effective computational methods that can effectively predict potential DTIs, as traditional DTI laboratory experiments are expensive, time-consuming, and labor-intensive. Some technologies have been developed for this purpose, however large numbers of interactions have not yet been detected, the accuracy of their prediction still low, and protein sequences and structured data are rarely used together in the prediction process.MethodsThis paper presents DTIs prediction model that takes advantage of the special capacity of the structured form of proteins and drugs. Our model obtains features from protein amino-acid sequences using physical and chemical properties, and from drugs smiles (Simplified Molecular Input Line Entry System) strings using encoding techniques. Comparing the proposed model with different existing methods under K-fold cross validation, empirical results show that our model based on ensemble learning algorithms for DTI prediction provide more accurate results from both structures and features data.ResultsThe proposed model is applied on two datasets:Benchmark (feature only) datasets and DrugBank (Structure data) datasets. Experimental results obtained by Light-Boost and ExtraTree using structures and feature data results in 98 % accuracy and 0.97 f-score comparing to 94 % and 0.92 achieved by the existing methods. Moreover, our model can successfully predict more yet undiscovered interactions, and hence can be used as a practical tool to drug repositioning.A case study of applying our prediction model on the proteins that are known to be affected by Corona viruses in order to predict the possible interactions among these proteins and existing drugs is performed. Also, our model is applied on Covid-19 related drugs announced on DrugBank. The results show that some drugs like DB00691 and DB05203 are predicted with 100 % accuracy to interact with ACE2 protein. This protein is a self-membrane protein that enables Covid-19 infection. Hence, our model can be used as an effective tool in drug reposition to predict possible drug treatments for Covid-19.  相似文献   

20.
The presented program ALIGN_MTX makes alignment of two textual sequences with an opportunity to use any several characters for the designation of sequence elements and arbitrary user substitution matrices. It can be used not only for the alignment of amino acid and nucleotide sequences but also for sequence-structure alignment used in threading, amino acid sequence alignment, using preliminary known PSSM matrix, and in other cases when alignment of biological or non-biological textual sequences is required. This distinguishes it from the majority of similar alignment programs that make, as a rule, alignment only of amino acid or nucleotide sequences represented as a sequence of single alphabetic characters. ALIGN_MTX is presented as downloadable zip archive at http://www.imbbp.org/software/ALIGN_MTX/ and available for free use.As application of using the program, the results of comparison of different types of substitution matrix for alignment quality in distantly related protein pair sets were presented. Threading matrix SORDIS, based on side-chain orientation in relation to hydrophobic core centers with evolutionary change-based substitution matrix BLOSUM and using multiple sequence alignment information position-specific score matrices (PSSM) were taken for test alignment accuracy. The best performance shows PSSM matrix, but in the reduced set with lower sequence similarity threading matrix SORDIS shows the same performance and it was shown that combined potential with SORDIS and PSSM can improve alignment quality in evolutionary distantly related protein pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号