首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report here the first alkyl radical additions of (η6-arene)tricarbonylmanganese complexes in the presence of alkylmercury chloride and NaI (Eq. 1). The mechanism was postulated to be the alkyl radical addition to ArMn- (CO)+3 cation to form the corresponding 17 valence electron intermediate, which was then reduced by alkylmercury chloride via a single electron transfer process to afford the product and regenerate an alkyl radical. [1]  相似文献   

2.
Reduction of alkylmercury(II) acetates with N-benzyl-1,4-dihydronicotinamide (BNAH) proceeds through electron-transfer chain-substitution mechanism. The rate constant of hydrogen transfer from BNAH to alkyl radical was estimated as in the order of 105 1/mol·sec.  相似文献   

3.
A mixture of tertiary alkyl halide and 2-methylene-1,3-dithiane was treated with butylmagnesium bromide in the presence of a catalytic amount of zirconocene dichloride. The reaction resulted in alkylative dimerization to yield the corresponding vic-bis(dithiane). The reaction would proceed as follows. A single electron transfer from low-valent zirconocene to alkyl halide would generate the corresponding alkyl radical. The radical adds to 2-methylene-1,3-dithiane to afford the corresponding radical stabilized by the two sulfur atoms. A couple of the stable radicals finally undergo dimerization.  相似文献   

4.
A novel design for initiating radical-based chemistry in a catalytic fashion is described. The design of the concept is based on the phenylselenyl group transfer reaction from alkyl phenyl selenides by utilizing PhSeSiR(3) (1) as a catalytic reagent. The reaction is initiated by the homolytic cleavage of -C-Se- bond of an alkyl phenyl selenide by the in situ generated alkylsilyl radical (R(3)Si(*)), obtained by the mesolysis of PhSeSiR(3)](*)(-)( )()(1(*)(-)). The oxidative dimerization of counteranion PhSe(-) to PhSeSePh functions as radical terminator. The generation of 1(*)(-) is achieved by the photoinduced electron transfer (PET) promoted reductive activation of 1 through a photosystem comprising of a visible-light (410 nm)-absorbing electron rich DMA as an electron donor and ascorbic acid as a co-oxidant (Figure 1). The optimum mole ratio between the catalyst 1 and alkyl phenyl selenides for successful reaction is established to be 1:10. The generality of the concept is demonstrated by carrying out variety of radical reactions such as cyclization (10, 15-18), intermolecular addition (25), and tandem annulations (32).  相似文献   

5.
Understanding electron‐transfer processes is crucial for developing organoselenium compounds as antioxidants and anti‐inflammatory agents. To find new redox‐active selenium antioxidants, we have investigated one‐electron‐transfer reactions between hydroxyl (.OH) radical and three bis(alkanol)selenides (SeROH) of varying alkyl chain length, using nanosecond pulse radiolysis. .OH radical reacts with SeROH to form radical adduct, which is converted primarily into a dimer radical cation (>Se∴Se<)+ and α‐{bis(hydroxyl alkyl)}‐selenomethine radical along with a minor quantity of an intramolecularly stabilized radical cation. Some of these radicals have been subsequently converted to their corresponding selenoxide, and formaldehyde. Estimated yield of these products showed alkyl chain length dependency and correlated well with their antioxidant ability. Quantum chemical calculations suggested that compounds that formed more stable (>Se∴Se<)+, produced higher selenoxide and lower formaldehyde. Comparing these results with those for sulfur analogues confirmed for the first time the distinctive role of selenium in making such compounds better antioxidants.  相似文献   

6.
Photoinduced electron-transfer processes in the systems of chlorophylls (Chl) (chlorophyll-a [Chl-a] and chlorophyll-b) and fullerenes (C60/C70) in both polar and non-polar solvents have been investigated with nanosecond laser photolysis technique, observing the transient spectra in the visible/near-IR regions. By the excitation of Chl in benzonitrile (BN) it has been proved that electron transfer takes place from the triplet excited states of Chl to the ground states of C60/C70. By the excitation of C70 in BN electron transfer takes place from the ground states of Chl to the triplet excited state of C70. In both Chl the rate constants and quantum yields for the electron-transfer processes are as high as those of zinc porphyrins and zinc phthalocyanines, indicating that the long alkyl chains of Chl play no role in retarding the electron transfer. The rate constant for the electron-mediating process from the radical anion of C70 to octylviologen dication yielding the octylviologen radical cation was evaluated. The back electron-transfer process from the viologen radical cation to the radical cation of Chl-a takes place in a longer time-scale, indicating that a photosensitized electron-transfer/electron-mediating cycle is achieved.  相似文献   

7.
The general strategies to stabilize a boryl radical involve single electron delocalization by π-system and the steric hinderance from bulky groups. Herein, a new class of boryl radicals is reported, with intramolecular mixed-valent B(III)Br-B(II) adducts ligated by a cyclic (alkyl)(amino)carbene (CAAC). The radicals feature a large spin density on the boron center, which is ascertained by EPR spectroscopy and DFT calculations. Structural and computational analyses revealed that the stability of radical species was assisted by the CAAC ligand and a weak but significant B(III)Br-B(II) interaction, suggesting a cooperative avenue for stabilization of boryl radicals. Two-electron reduction of these new boryl radicals provides C−H insertion products via a borylene intermediate.  相似文献   

8.
Aromatic β-hydroxyoximes undergo unusual fragmentation reactions as protonated or cationized species, as radical cations, or as (M - H)? ions, As protonated species, they expel OH ’ from the oxime functionality in violation of the even electron rule. Parallel eliminations of alkyl radicals follow OH’ loss when the aromatic ring is substituted with an alkyl chain. Alkyl radical losses appear to be characteristic of radical cations that can isomerize to ions in which the alkyl chain bears a radical site and the charged site is the conjugate acid of a basic functionality (e.g., oxime or imine). Evidence for the mechanisms was found in the ion chemistry of oxime and imine radical cations. The imine reference compounds were conveniently generated by fast atom bombardment-induced reduction of oximes, removing the requirement for using conventional chemical synthesis. Protonated imines and the (M - H)? ions of oximes fragment extensively via charge-remote processes to eliminate the elements of alkanes. This chemistry is not shared by the protonated oximes.  相似文献   

9.
Crystalline Si(111) surfaces have been alkylated in a two-step chlorination/alkylation process using sterically bulky alkyl groups such as (CH3)2CH- (iso-propyl), (CH3)3C- (tert-butyl), and C6H5- (phenyl) moieties. X-ray photoelectron spectroscopic (XPS) data in the C 1s region of such surfaces exhibited a low energy emission at 283.9 binding eV, consistent with carbon bonded to Si. The C 1s XPS data indicated that the alkyls were present at lower coverages than methyl groups on CH(3)-terminated Si(111) surfaces. Despite the lower alkyl group coverage, no Cl was detected after alkylation. Functionalization with the bulky alkyl groups effectively inhibited the oxidation of Si(111) surfaces in air and produced low (<100 cm s(-1)) surface recombination velocities. Transmission infrared spectroscopy indicated that the surfaces were partially H-terminated after the functionalization reaction. Application of a reducing potential, -2.5 V vs Ag+/Ag, to Cl-terminated Si(111) electrodes in tetrahydrofuran resulted in the complete elimination of Cl, as measured by XPS. The data are consistent with a mechanism in which the reaction of alkyl Grignard reagents with the Cl-terminated Si(111) surfaces involves electron transfer from the Grignard reagent to the Si, loss of chloride to solution, and subsequent reaction between the resultant silicon radical and alkyl radical to form a silicon-carbon bond. Sites sterically hindered by neighboring alkyl groups abstract a H atom to produce Si-H bonds on the surface.  相似文献   

10.
The thermal stabilities of various poly(alkyl methacrylate) homopolymers and poly(methyl methacrylate-g-dimethyl siloxane) (PMMA-g-PSX) graft copolymers have been determined by thermogravimetric analysis (TGA). As expected, the thermal stabilities of poly(alkyl methacrylates) were a function of the ester alkyl group, and polymerization mechanism. In particular, thermally labile linkages, which result from termination during free radical or nonliving polymerization mechanisms, decrease the ultimate thermal stabilities of the polymers. However, graft copolymers, which were prepared by the macromonomer technique with free radical initiators, exhibited enhanced thermal stability compared to homopolymer controls. A more complex free radical polymerization mechanism for the macromonomer modified polymerization may account for this result. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
Defluorination of PTFE by alkyllithium/electron-donating solvents such as N,N,N',N'-tetramethylethylenediamine (TMEDA), hexamethylphosphoramide (HMPA) was studied by means of spectroscopy such as ESR, 7Li- and 13C-NMR, XPS, UV-Vis and IR. Based on the experimental results, it was concluded that an electron from radical species, which was generated in the alkyllithium/electron-donating solvent, was transferred onto PTFE molecule so as to eliminate fluorine atoms from the PTFE and to form carbon-centered radicals on the PTFE; concomitantly, the alkyl group of the alkyllithium was transferred onto the PTFE. Combined with the experimental results of the phenyllithium/HMPA system, mechanism of the fluorine atom elimination reactions from PTFE by the radical species is discussed.  相似文献   

12.
(o-Phenylenediamino)borylstannanes were newly synthesized to achieve radical boryl substitutions of a variety of alkyl radical precursors. Dehalogenative, deaminative, decharcogenative, and decarboxylative borylations proceeded in the presence of a radical initiator to give the corresponding organic boron compounds. Radical clock experiments and computational studies have provided insights into the mechanism of the homolytic substitution (SH2) of the borylstannanes with alkyl radical intermediates. DFT calculation disclosed that the phenylenediamino structure lowered the LUMO level including the vacant p-orbital on the boron atom to enhance the reactivity to alkyl radicals in SH2. Moreover, C(sp3)-H borylation of THF was accomplished using the triplet state of xanthone.  相似文献   

13.
Poly(meth)acrylates of three types, namely, regular homopolymers containing side-chain tetraalkylammonium ionic groups with alkyl radicals of various lengths (C6 and C16), a copolymer with statistically distributed ionic and long-chain (C18) alkyl groups, and a block copolymer of the same composition in which alkylammonium and alkyl groups are located in separate blocks, are synthesized with the use of controlled radical polymerization processes. The interaction of the polymers with molybdenum disulfide singlelayer dispersions yields self-organized organic-inorganic nanocomposites containing up to 40% polymer. As evidenced by powder X-ray diffraction and high-resolution transmission electron microscopy structural studies of the composites, they possess a crystalline layered structure with interlayer distances depending on the composition and structure of the polymer. Structures with the most regular alternation of organic and inorganic layers are formed in the case of homopolymers. The orientation of their alkylammonium fragments relative to MoS2 layers depends on the length of the alkyl radical and corresponds to their parallel (C6) or perpendicular (C16) arrangement.  相似文献   

14.
Parent radical cations of nonpolar solvents (alkanes and alkyl chlorides) ionize 9-(trimethylsilyl)xanthenes and 9-(trimethylsilyl)fluorenes in a diffusion-controlled electron transfer. The actual electron jump as the deciding part of the process does not require a defined encounter complex, and therefore the reactants are not subjected to any geometry optimization. Considering the molecule dynamics of the donors, bending motions of the silyl group are concerted with fluctuations of the highest occupied molecular orbital electrons. Ionizing such a standing conformer mixture creates metastable (microsecond) as well as dissociative donor radical cations. A mobility restriction of the benzylic silane group in positions vertical to the phenyl plane stabilizes the radical cations and accounts for a declining amount of dissociative radical cations, which undergo C-Si bond fragmentation in the order benzylsilane > xanthenylsilane > fluorenylsilane.  相似文献   

15.
Using cyclopropylmethyl bromide as mechanism-sensitive reagent, it was shown that the reaction of phthalonitrile radical anion with alkyl halides in liquid ammonia involves electron transfer. The effects of the nature of alkyl bromide and counterion in the radical anion salt and reaction conditions on the ratio of 2-alkyl-benzonitrile, 4-alkylphthalonitrile, and 2,5-dialkylbenzonitrile were studied. Phthalodinitrile radical anion was found to undergo dimerization with formation of biphenyl-2,3′,4′-tricarbonitrile. The examined transformations may underlie syntheses of phthalonitriles modified at the 4-position.  相似文献   

16.
The mechanism of reductive cleavage of model alkyl halides (methyl 2-bromoisobutyrate, methyl 2-bromopropionate, and 1-bromo-1-chloroethane), used as initiators in living radical polymerization (LRP), has been investigated in acetonitrile using both experimental and computational methods. Both theoretical and experimental investigations have revealed that dissociative electron transfer to these alkyl halides proceeds exclusively via a concerted rather than stepwise manner. The reductive cleavage of all three alkyl halides requires a substantial activation barrier stemming mainly from the breaking C-X bond. The activation step during single electron transfer LRP (SET-LRP) was originally proposed to proceed via formation and decomposition of RX(?-) through an outer sphere electron transfer (OSET) process (Guliashvili, T.; Percec, V. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 1607). These radical anion intermediates were proposed to decompose via heterolytic rather than homolytic C-X bond dissociation. Here it is presented that injection of one electron into RX produces only a weakly associated charge-induced donor-acceptor type radical anion complex without any significant covalent σ type bond character between carbon-centered radical and associated anion leaving group. Therefore, neither homolytic nor heterolytic bond dissociation applies to the reductive cleavage of C-X in these alkyl halides inasmuch as a true radical anion does not form in the process. In addition, the whole mechanism of SET-LRP has to be revisited since it is based on presumed OSET involving intermediate RX(?-), which is shown here to be nonexistent.  相似文献   

17.
A cyclic alkyl(amino)carbene readily reacts with SbCl3 to form the corresponding SbIII adduct. One‐electron reduction gives rise to the first example of a neutral antimony‐centered radical characterized in solution. Two‐electron reduction affords a Lewis base stabilized chloro‐stibinidene, whereas three‐electron reduction gives an antimony diatomic species capped by two carbenes. The radical has been characterized by EPR spectroscopy, while the structure of the other three species has been ascertained by single‐crystal X‐ray diffraction. In these four species, the formal oxidation state of the metalloid diminishes from III, to II, to I, and finally 0.  相似文献   

18.
The photochemical deprotection of alkyl 2,4-dinitrobenzenesulfenate or alkyl 2-nitrobenzenesulfenate was successfully achieved by addition of triethylamine, while it was unsuccessful without triethylamine. The sulfur-oxygen bond cleavage is thought to occur heterolytically in the sulfenate anion radical produced by photoinduced electron transfer with triethylamine.  相似文献   

19.
The efficiency of photoinduced charge separation across surfactant interfaces of micelles and vesicles depends in part on the location of electron donors and acceptors relative to the interface. Achievement and assessment of control of such location by the addition of pendant alkyl chains to donors and acceptors is shown to be achievable. The net photoionization efficiency can be measured by electron spin resonance of radical ions in frozen surfactant solutions. Assessment of relative locations of radical ions with respect to a surfactant interface has been achieved by analysis of electron spin-echo modulation from deuterium in deuterated water at the interface.Results for a series of positive, neutral and negatively charged alkylphenothiazine derivatives in vesicle, micelle and reverse micelle surfactant assemblies of different interface charge are discussed. Controlling factors involve the alkyl chain length of the electron donors, the relative charge of the surfactant assembly interface versus that of the electron donor derivative, and the degree of molecular order in the interface. Secondary factors include alkyl chain bending, photoinduced radical conversion and back electron transfer.  相似文献   

20.
《中国化学快报》2023,34(11):108590
A new cooperative nickel reductive catalysis and N,N-dimethylformamide-mediated strategy for umpolung CS radical reductive cross coupling of S-(trifluoromethyl)arylsulfonothioates with alkyl halides to produce alkyl aryl thioethers is described. This reaction features excellent selectivity, wide functionality tolerance, broad substrate scope, and facile late-stage modification of biologically relevant molecules. Mechanistic studies recognize initial generation of an amidyl radical anion via thermoinduced reduction of DMF with Sn, followed by umpolung reduction and single electron transfer of the nucleophilic sulfonyl moiety to form a sulphydryl radical and engage the Ni0/NiI/NiIII/NiI catalytic cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号