首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
用流动显示法和图像分析法研究了气粒并流上行流动中颗粒团的瞬态行为,通过灰度梯度识别颗粒团,由颗粒团成像的象素确定其尺寸,采用相关分析法计算颗粒团的速度。随着颗粒流量的提高和表现气速的降低,气粒并流上行流动中开始出现颗粒团,由于颗粒团与气相的相互作用,流态具有不稳定和不规则的现象.在一定操作条件下,在壁面附近出现了一些长时间停留的大尺寸颗粒团.  相似文献   

2.
Pinning and long-time-scale behavior in traveling-wave convection   总被引:1,自引:0,他引:1  
We study nonlinear traveling-wave (TW) and stationary states of convection in experiments in ethanol-water mixtures. While the TW phase velocity as a function of Rayleigh number has been recently shown to be in agreement with the predictions of theory and numerical calculations, we find that this velocity is temporally modulated at frequencies corresponding to the travel time of a single convection roll and of a roll pair past a point stationary in the convection cell. This modulation could be due to the pinning of the convection pattern by experimental inhomogeneities. For large Rayleigh numbers where stationary overturning convection is expected, we sometimes observe extremely slow unidirectional TW states. For larger Rayleigh numbers, this slow TW state starts and stops intermittently on a characteristic time scale of several days. The possible origin of these phenomena and their potential utility are discussed.  相似文献   

3.
A finite volume method for the numerical solution of axisymmetric inviscid swirling flows is presented. The governing equations of the flow are the axisymmetric compressible Euler equations including swirl (or tangential) velocity. A first-order scheme is introduced where the convective fluxes at cell interfaces are evaluated by the Rusanov or the HLLC numerical flux while the geometric source terms are discretizated to provide a well-balanced scheme i.e. the steady-state solutions with null velocity are preserved. Extension to the second-order space approximation using a multislope MUSCL method is then derived. To test the numerical scheme, a stationary solution of the fluid flow following the radial direction has been established with a zero and nonzero tangential velocity. Numerical and exact solutions are compared for classical Riemann problems where we employ different limiters and effectiveness of the multislope MUSCL scheme is demonstrated for strongly shocked axially symmetric flows like in spherical bubble compression problem. Two other tests with axisymmetric geometries are performed: the supersonic flow in a tube with a cone and the axisymmetric blunt body with a free stream.  相似文献   

4.
Zhao-Yang Liu 《中国物理 B》2022,31(4):45202-045202
There are two distinct phases in the evolution of drift wave envelope in the presence of zonal flow. A long-lived standing wave phase, which we call the Caviton, and a short-lived traveling wave phase (in radial direction) we call the Instanton. Several abrupt phenomena observed in tokamaks, such as intermittent excitation of geodesic acoustic mode (GAM) shown in this paper, could be attributed to the sudden and fast radial motion of Instanton. The composite drift wave—zonal flow system evolves at the two well-separate scales:the micro-scale and the meso-scale. The eigenmode equation of the model defines the zero-order (micro-scale) variation; it is solved by making use of the two-dimensional (2D) weakly asymmetric ballooning theory (WABT), a theory suitable for modes localized to rational surface like drift waves, and then refined by shifted inverse power method, an iterative finite difference method. The next order is the equation of electron drift wave (EDW) envelope (containing group velocity of EDW) which is modulated by the zonal flow generated by Reynolds stress of EDW. This equation is coupled to the zonal flow equation, and numerically solved in spatiotemporal representation; the results are displayed in self-explanatory graphs. One observes a strong correlation between the Caviton-Instanton transition and the zero-crossing of radial group velocity of EDW. The calculation brings out the defining characteristics of the Instanton:it begins as a linear traveling wave right after the transition. Then, it evolves to a nonlinear stage with increasing frequency all the way to 20 kHz. The modulation to Reynolds stress in zonal flow equation brought in by the nonlinear Instanton will cause resonant excitation to GAM. The intermittency is shown due to the random phase mixing between multiple central rational surfaces in the reaction region.  相似文献   

5.
本文采用流动显示的方法对平板混合层中上下层流体速度比对固体颗粒在混合层中沉降的影响进行了研究。实验中分别采用粒径小于 40 um,粒径 98~104um,粒径 154~160um的玻璃微珠以及环氧树脂作为固相颗粒,对这些颗粒在速度比分别为1:1.2、1:2和1:2.8的液相混合层中的运动进行了显示。结果表明混合层中大涡结构对固体颗粒的沉降具有迟滞作用,其作用程度取决于混合层中上下层流体速度比。速度比越大,颗粒的沉降越慢。  相似文献   

6.
Conventional spin-echo magnetic resonance (MR) imaging of venous thrombosis is complicated by the variable appearance produced by the stage of blood clot degradation and velocity of blood flow. Phase MR imaging is a simple method based primarily on whether protons are stationary or moving. A case of superior sagittal sinus thrombosis demonstrates the utility of phase imaging.  相似文献   

7.
We consider the application of least-squares finite element models combined with spectral/hp methods for the numerical solution of viscous flow problems. The paper presents the formulation, validation, and application of a spectral/hp algorithm to the numerical solution of the Navier–Stokes equations governing two- and three-dimensional stationary incompressible and low-speed compressible flows. The Navier–Stokes equations are expressed as an equivalent set of first-order equations by introducing vorticity or velocity gradients as additional independent variables and the least-squares method is used to develop the finite element model. High-order element expansions are used to construct the discrete model. The discrete model thus obtained is linearized by Newton’s method, resulting in a linear system of equations with a symmetric positive definite coefficient matrix that is solved in a fully coupled manner by a preconditioned conjugate gradient method. Spectral convergence of the L2 least-squares functional and L2 error norms is verified using smooth solutions to the two-dimensional stationary Poisson and incompressible Navier–Stokes equations. Numerical results for flow over a backward-facing step, steady flow past a circular cylinder, three-dimensional lid-driven cavity flow, and compressible buoyant flow inside a square enclosure are presented to demonstrate the predictive capability and robustness of the proposed formulation.  相似文献   

8.
We investigate stationary nonequilibrium states of systems of particles moving according to Hamiltonian dynamics with specified potentials. The systems are driven away from equilibrium by Maxwell-demon reflection rules at the walls. These deterministic rules conserve energy but not phase space volume, and the resulting global dynamics may or may not be time reversible (or even invertible). Using rules designed to simulate moving walls, we can obtain a stationary shear flow. Assuming that for macroscopic systems this flow satisfies the Navier-Stokes equations, we compare the hydrodynamic entropy production with the average rate of phase-space volume compression. We find that they are equalwhen the velocity distribution of particles incident on the walls is a local Maxwellian. An argument for a general equality of this kind, based on the assumption of local thermodynamic equilibrium, is given. Molecular dynamic simulations of hard disks in a channel produce a steady shear flow with the predicted behavior.  相似文献   

9.
The origin of the wave properties of matter is discussed from the point of view of stochastic electrodynamics. A nonrelativistic model of a charged particle with an effective structure embedded in the random zeropoint radiation field reveals that the field induces a high-frequency vibration on the particle; internal consistency of the theory fixes the frequency of this jittering at mc2/. The particle is therefore assumed to interact intensely with stationary zeropoint waves of this frequency as seen from its proper frame of reference; such waves, identified here as de Broglie's phase waves, give rise to a modulated wave in the laboratory frame, with de Broglie's wavelength and phase velocity equal to the particle velocity. The time-independent equation that describes this modulated wave is shown to be the stationary Schrödinger equation (or the Klein-Gordon equation in the relativistic version). In a heuristic analysis appled to simple periodic cases, the quantization rules are recovered from the assumption that for a particle in a stationary state there must correspond a stationary modulation. Along an independent and complementary line of reasoning, an equation for the probability amplitude in configuration space for a particle under a general potential V(x) is constructed, and it is shown that under conditions derived from stochastic electrodynamics it reduces to Schrödinger's equation. This equation reflects therefore the dual nature of the quantum particles, by describing simultaneously the corresponding modulated waveand the ensemble of particles.  相似文献   

10.
单帧单曝光图像法测量气固两相流速度场   总被引:5,自引:0,他引:5  
本文提出一种基于单帧单曝光图像的气固两相流固相颗粒的速度场测量方法。通过控制相机的单次曝光时间获得流场中颗粒的单帧运动模糊图像,运用分水岭算法分割图像,提取颗粒,由自相关函数获得各颗粒的速度大小和方向,重建二维速度场。利用该方法对玻璃珠在空气中重力沉降的速度测量结果与理论值基本一致,矢量场与颗粒运动轨迹相符,说明该方法可以用于气固两相流速度场的测量。研究发现使用片光源比背光源能够获得更加准确的速度值。  相似文献   

11.
In this paper, we study traffic flow patterns induced by incessant constant disturbances in the full velocity difference car-following model. It is found that intermittent unstable structures may occur in the convectively unstable traffic flow under certain situations. A phenomenological explanation of the phenomenon is given: the incessant constant disturbances mainly function to maintain the stationary oscillating structure while the stationary oscillating structure is not always stable, the intermittent instability of it leads to the intermittent unstable structures. The similarity of the stationary oscillating structure to the transition layer in the local cluster effect is pointed out. The dependence of the phenomenon on the headway of the initially uniform traffic, the safety distance xc, the sensitivity parameters κ and λ, and the noise term is also investigated.  相似文献   

12.

Abstract  

Wind-tunnel data on velocity perturbations evolving in a laminar swept-wing flow under low subsonic conditions are reported. The focus of the present experiments are secondary disturbances of the boundary layer which is modulated by stationary streamwise vortices. Both the stationary vortices and the secondary oscillations of interest are generated in a controlled manner. The experimental data are obtained through hot-wire measurements. Thus, evolution of the vortices, either isolated or interacting with each other, is reconstructed in detail. As is found, the secondary disturbances, initiating the laminar-flow breakdown, are strongly affected by configuration of the stationary boundary-layer perturbation that may have an implication to laminar–turbulent transition control.  相似文献   

13.
This paper investigates the magnetohydrodynamic (MHD) electroosmotic flow (EOF) of Newtonian fluid through a zeta potential modulated parallel plate microchannel with patterned hydrodynamic slippage. The driven mechanism of the flow originates from the Lorentz force generated by the interaction of externally imposed lateral electric field $E_y$ and vertical magnetic field $B_z$ and electric field force produced by an externally applied electric field $E_x$. It is assumed that the wall zeta potential and the slip length are periodic functions of axial coordinate $x$, an analytical solution of the stream function is achieved by utilizing the method of separation of variables and perturbation expansion. The pictures of streamlines are plotted and the vortex configurations produced in flow field due to patterned wall potential and hydrodynamic slippage are discussed. Based on the stream function, the velocity field and volume flow rate are obtained, which are greatly depend on some dimensionless parameters, such as slip length $l_s$, electrokinetic width $\lambda$, the amplitude $\delta$ of the patterned slip length, the amplitude $m$ of the modulated zeta potential and Hartmann number $Ha$. The variations of velocity and volume flow rate with these dimensionless parameters are discussed in details. These theoretical results may provide some guidance effectively operating micropump in practical nanofluidic applications.  相似文献   

14.
Data in a one-dimensional object format has been stored and reconstructed in one-dimensional holograms on stationary and moving film. In the case of moving film a cw rather than a pulsed laser is used, with the light modulated only by changes in the object. This simplifies the recording configuration considerably. The possibility of using a random diffuser in front of the object is not obvious but is important in that it shows a page composer object need not be phase coherent. The theoretical background and experimental results, including results using a high-speed ferroelectric page composer, are presented.  相似文献   

15.
A two-dimensional multiscale windowed Fourier transform (2D-MWFT), based on two-dimensional Gabor wavelet transform (2D-GWT), for the phase extraction from a spatial fringe pattern in fringe projection profilometry is presented. First, the instantaneous frequencies on x and y direction of the modulated fringe pattern are determined by 2D-GWT, and then the local stationary lengths are obtained. The 2D-MWFT with different two-dimensional Gaussian windows whose width is set according to the local stationary length is preformed for each section of the modulated fringe pattern to achieve multiresolution analysis and phase demodulation. Comparing the result of the phase demodulated by 2D-GWT and two-dimensional windowed Fourier transform (2D-WFT) with that by 2D-MWFT in a numerical simulation, we show that the 2D-MWFT method is superior to these methods, especially for the local non-stationary signal with low frequency. The theory and the results of a simulation and experiment are shown.  相似文献   

16.
Magnetic resonance imaging sequences utilizing limited flip angles and gradient echoes yield rapid (less than 2 min) dynamic images of the cardiovascular system. These images contain both accurate anatomical and functional information. Using a gradient refocused acquisition in the steady state (GRASS) in the CINE mode, we studied the relationship between gradient echo signal intensity and velocity of steady and pulsatile flow in a phantom simulating medium to large vessels. Images were acquired on a 1.5 Tesla system (repetition TIME = 21 ms, echo TIME = 12 ms, flip ANGLE = 30 degrees). Data from each pulse interval were sorted in 16 images. Signal intensities from flow tube lumina and surrounding stationary water jacket were used to calculate contrast ratios which were compared to velocity measurements made with electromagnetic (EM) flow probes outside the magnet room. During steady flow, signal intensity contrast ratios increased with increasing flow and in a 10 mm thick slice, reached a peak at 48 cm/s, and declined for velocities up to 90 cm/s. Changes in instantaneous velocity during pulsatile flow correlated well (r > .88) with signal intensity changes up to a maximum mean velocity of 17 cm/s. Total signal intensity from the lumen for an “R to R” interval correlated extremely well (r > .97) with mean pulsatile flow velocities up to 30 cm/s. The excellent correlation between gradient echo signal intensity and actual flow velocities suggests that this imaging sequence might be useful for evaluating normal and pathologic flow phenomena.  相似文献   

17.
The mean-field theory of an Ising magnet with infinitely weak, infinitely long-range potentials of arbitrary sign is presented in terms of a variational principle for the magnetization. Previous studies of the theory have revealed paramagnetic, ferromagnetic, and modulated phases. For a particular choice of potential, which is an obvious continuous version of the between-plane ANNNI model interaction, exact solutions of the stationary condition implied by the variational principle are obtained. This leads us to formulate a trial magnetization to well describe the modulated phase in general. To illustrate the utility of the trial magnetization, both analytic and numerical calculations are performed, which determine the wavenumber in certain portions of the modulated phase for the above-mentioned potential.  相似文献   

18.
多孔介质BISQ模型中的慢纵波   总被引:5,自引:0,他引:5       下载免费PDF全文
着重研究了多孔介质BISQ模型中慢纵波的基本特性.给出了BISQ模型下慢纵波速度 和衰减的低频近似公式.与Biot理论对比,BISQ模型中慢纵波的衰减随频率降低急剧增大, 且随喷射流长度的减小而增加;相速度随喷射流长度的减小而增加,其低频极限值不是零; 孔隙流体位移与固相骨架位移之比的幅值随喷射流长度的增加而减小,其相位特点与Biot模 型预测的不同;在流体与孔隙介质的边界上可产生更大的渗流.为对比,同时也给出快纵波 的行为.依据BISQ模型可推断:非黏滞流体饱和孔隙介质中不存在喷射流机理;BISQ模型中 关键词: 多孔介质 喷射流 慢纵波 动力协调  相似文献   

19.
The silo discharge process is studied by molecular dynamics simulations. The development of the velocity profile and the probability density function for the displacements in the horizontal and vertical axis are obtained. The PDFs obtained at the beginning of the discharge reveal non-Gaussian statistics and superdiffusive behaviors. When the stationary flow is developed, the PDFs at shorter temporal scales are non-Gaussian too. For big orifices a well-defined transition between ballistic and diffusive regime is observed. In the case of a small outlet orifice, no well-defined transition is observed. We use a nonlinear diffusion equation introduced in the framework of non-extensive thermodynamics in order to describe the movements of the grains. The solution of this equation gives a well-defined relationship (γ= 2/(3-q)) between the anomalous diffusion exponent γ and the entropic parameter q introduced by the non-extensive formalism to fit the PDF of the fluctuations.  相似文献   

20.
An experimental study of a turbulent von Kármán flow in a cylinder is presented. The mean flow is stationary up to a Reynolds number Re=10(4) where a bifurcation takes place. The new regime breaks some symmetries of the problem and becomes time dependent because of equatorial vortices moving with a precession movement. In the exact counterrotating case, a bistable regime appears and spontaneous reversals of the azimuthal velocity are registered. A three-well potential model with additive noise reproduces this dynamic. A regime of periodic response is observed when a very weak forcing is applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号