首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
COE‐4 zeolites possess a unique two‐dimensional ten‐ring pore structure with the Si(OH)2 hydroxyl groups attached to the linker position between the ferrierite‐type layers, which has been demonstrated through the interlayer‐expansion approach in our previous work (H. Gies et al. Chem. Mater.­ 2012 , 24, 1536). Herein, density functional theory is used to study the framework stability and Brønsted acidity of the zeolite T‐COE‐4, in which the tetravalent Si is isomorphously substituted by a trivalent Fe, B, Ga, or Al heteroatom at the linker position. The influences of substitution energy and equilibrium geometry parameters on the stability of T‐COE‐4 are investigated in detail. The relative acid strength of the linker position is revealed by the proton affinity, charge analysis, and NH3 adsorption. It is found that the range of the 〈T‐O‐Si〉 angles is widened to maintain the stability of isomorphously substituted T‐COE‐4 zeolites. The smaller the 〈O1‐T‐O2〉 bond angle is, the more difficult is to form the regular tetrahedral unit. Thus, the substitution energies at the linker positions increase in the following sequence: Al‐COE‐4 < Ga‐COE‐4 < Fe‐COE‐4 < B‐COE‐4. The adsorption of NH3 as a probe molecule indicates that the acidity can affect the hydrogen‐bonding interaction between (N?H???O2) and (N???H?O2). The relative Brønsted‐acid strength of the interlayer‐expanded T‐COE‐4 zeolite decreases in the order of Al‐COE‐4 > Ga‐COE‐4 > Fe‐COE‐4 > B‐COE‐4. These findings may be helpful for the structural design and functional modification of interlayer‐expanded zeolites.  相似文献   

2.
Highly crystalline and (hydro)thermally stable zeolites with extra‐large pores [≥14‐ring (14‐R)] are desirable as catalysts. A novel zeolite, ECNU‐9, with an intersecting 14*12‐R channel system was rationally designed and synthesized by a building block strategy, in which the interlayer expansion of a two‐dimensional silicate structure was realized by combining organic amine assisted layer‐stacking reorganization and subsequent silylation with a square‐shaped single 4‐ring (S4R) silane, 1,3,5,7‐tetramethylcyclotetrasiloxane (TMCS). The PLS‐3 precursor was disassembled into building blocks and then intercalated with flexible and removable organic amine pillars to offer enough interlayer spacing for accommodating TMCS molecules. The additionally introduced building blocks interconnected the neighboring layers to construct new 14‐R and 12‐R pores. ECNU‐9 possesses a well‐ordered structure with a novel topology. The corresponding Ti‐ECNU‐9, with tetrahedral Ti ions in the framework, showed superior catalytic performance in the selective epoxidation of bulky alkenes.  相似文献   

3.
AST‐type zeolite with a plate morphology can be synthesized by topotactic conversion of a layered silicate (β‐helix‐layered silicate; HLS) by using N,N‐dimethylpropionamide (DPA) to control the layer stacking of silicate layers and the subsequent interlayer condensation. Treatment of HLS twice with 1) hydrochloric acid/ethanol and 2) dimethylsulfoxide (DMSO) are needed to remove interlayer hydrated Na ions and tetramethylammonium (TMA) ions in intralayer cup‐like cavities (intracavity TMA ions), both of which are introduced during the preparation of HLS. The utilization of an amide molecule is effective for the control of the stacking sequence of silicate layers. This method could be applicable to various layered silicates that cannot be topotactically converted into three‐dimensional networks by simple interlayer condensation by judicious choice of amide molecules.  相似文献   

4.
4‐Amino‐1‐(2‐deoxy‐β‐D‐ribofuranosyl)quinazolin‐2‐one (4) was prepared by Barton deoxygenation from 4‐amino‐1‐(β‐D‐ribofuranosyl)quinazolin‐2‐one (3) as a 2′‐deoxycytidine analog.  相似文献   

5.
A new methodology taking advantage of gold(I)‐catalyzed ring expansion has been developed to assemble tricyclic 1H‐azocino[5,4‐b]indoles from 2‐propargyl‐β‐tetrahydrocarbolines. The azocinoindoles were obtained in moderate to excellent yields; the structure of which was established by X‐ray crystallographic analysis. A mechanism involving regioselective intramolecular hydroarylation, [1,2]‐alkenyl migration and carbon–carbon bond‐fragmentation was proposed.  相似文献   

6.
The first total synthesis of the natural product (?)‐(19R)‐ibogamin‐19‐ol ((?)‐ 1 ) is reported (biogenetic atom numbering). Starting with L ‐glutamic acid from the chiral pool and (2S)‐but‐3‐en‐2‐ol, the crucial aliphatic isoquinuclidine (= 2‐azabicyclo[2.2.2]octane) core containing the entire configurational information of the final target was prepared in 15 steps (overall yield: 15%). The two key steps involved a highly effective, self‐immolating chirality transfer in an Ireland–Claisen rearrangement and an intramolecular nitrone‐olefin 1,3‐dipolar cycloaddition reaction (Scheme 3). Onto this aliphatic core was grafted the aromatic moiety in the form of N(1)‐protected 1H‐indole‐3‐acetic acid by application of the dicyclohexylcarbodiimide (DCC) method (Scheme 4). Four additional steps were required to adjust the substitution pattern at C(16) and to deprotect the indole subunit for the closure of the crucial 7‐membered ring present in the targeted alkaloid family (Schemes 4 and 5). The spectral and chiroptical properties of the final product (?)‐ 1 matched the ones reported for the naturally occurring alkaloid, which had been isolated from Tabernaemonatana quadrangularis in 1980. The overall yield of the entire synthesis involving a linear string of 20 steps amounted to 1.9% (average yield per step: 82%).  相似文献   

7.
The stereoselective total synthesis of an antiproliferative and antifungal α‐pyrone natural product (6S)‐5,6‐dihydro‐6‐[(2R)‐2‐hydroxy‐6‐phenylhexyl]‐2H‐pyran‐2‐one is described. The key steps involved are the Prins cyclization, Mitsunobu reaction, and ring‐closing metathesis reaction.  相似文献   

8.
9.
2‐(1‐Aryl‐2‐methoxyethenyl)benzaldehydes 2 , obtained by successive treatment of 1‐(1‐aryl‐2‐methoxyethenyl)‐2‐bromobenzenes 1 with BuLi and 1‐formylpiperidine, were transformed to the corresponding phenylhydrazones 3 on treatment with PhNHNH2. When these hydrazones were allowed to react with conc. HBr, cyclization, followed by dehydrogenation with air occurred, furnished 3‐aryl‐2‐methoxyinden‐1‐one (Z)‐phenylhydrazones 4 .  相似文献   

10.
The hydroperoxy endoperoxide 3 , obtained by photooxygenation of isotetralin (= 1,4,5,8‐tetrahydronaphthalene; 1 ), was reduced with thiourea, and the resulting intermediate 4 was converted, after acetylation with acetyl chloride, to the interesting, double‐chlorinated acetate 5 in an unprecedented tandem reaction (Scheme 1). The structures and relative configurations of 3 and 5 were determined by NMR spectroscopy and by single‐crystal X‐ray‐diffraction analyses (Figs. 1 and 2, resp.). A mechanistic rationalization for the conversion of 4 to 5 is proposed (Scheme 2).  相似文献   

11.
The first total synthesis of sphingolipid (2S,3R,4E)‐N2‐octadecanoyl‐4‐tetradecasphingenine ( 1a ), a natural sphingolipid isolated from Bombycis Corpus 101A, and of its styryl analogue 1b was achieved in good overall yield (Schemes 1 and 2). The key step involved the installation with (E) stereoselectivity of a long lipophilic chain or phenyl group on allyl alcohol derivative 3 via a cross‐metathesis reaction (→ 5a or 5b ). The N‐Boc protected 3 was easily accessible from (S)‐Garner aldehyde.  相似文献   

12.
The (chitosan‐Schiff base)cobalt(II) complex was found to be an efficient catalyst for the oxidative carbonylation (CO/O2) of 2‐aminoalkan‐1‐ols 1 to give oxazolidin‐2‐ones 2 , in the presence of NaI. The effects of promoters, temperature, solvents, and other reaction conditions were investigated in this study.  相似文献   

13.
An efficient stereoselective total synthesis of (3R,5R)‐1‐(4‐hydroxyphenyl)‐7‐phenylheptane‐3,5‐diol ( 1 ) is reported based on the Mukaiyama aldol reaction. The total synthesis of compound 1 was accomplished with 30% overall yield in simple eight steps from commercially available trans‐cinnamaldehyde.  相似文献   

14.
15.
Reactions of di‐n‐butyltin(IV) oxide with 4′/2′‐nitrobiphenyl‐2‐carboxylic acids in 1 : 1 and 1 : 2 stoichiometry yield complexes [{(n‐C4H9)2Sn(OCOC12H8NO2?4′/2′)}2O]2 ( 1 and 2 ) and (n‐C4H9)2Sn(OCOC12H8NO2?4′/2′)2 ( 3 and 4 ) respectively. These compounds were characterized by elemental analysis, IR and NMR (1H, 13C and 119Sn) spectroscopy. The IR spectra of these compounds indicate the presence of anisobidentate carboxylate groups and non‐linear C? Sn? C bonds. From the chemical shifts δ (119Sn) and the coupling constants 1J(13C, 119Sn), the coordination number of the tin atom and the geometry of its coordination sphere have been suggested. [{(n‐C4H9)2Sn(OCOC12H8NO2?4′)}2O]2 ( 1 ) exhibits a dimeric structure containing distannoxane units with two types of tin atom with essentially identical geometry. To a first approximation, the tin atoms appear to be pentacoordinated with distorted trigonal bipyramidal geometry. However, each type of tin atom is further subjected to a sixth weaker interaction and may be described as having a capped trigonal bipyramidal structure. The diffraction study of the complex (n‐C4H9)2Sn(OCOC12H8NO2?4′)2 ( 3 ) shows a six–coordinate tin in a distorted octahedral frame containing bidentate asymmetric chelating carboxylate groups, with the n‐Bu groups trans to each other. The n‐Bu? Sn? n‐Bu angle is 152.8° and the Sn? O distances are 2.108(4) and 2.493(5) Å. The oxygen atom of the nitro group of the ligand does not participate in bonding to the tin atom in 1 and 3 . Crystals of 1 are triclinic with space group P1 and of that of 3 have orthorhombic space group Pnna. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
A novel and efficient method for the preparation of 1,3‐dihydro‐3‐oxo‐2‐benzofuran‐1‐carboxylates 4 under mild conditions has been developed. Thus, the reaction of [2‐(dimethoxymethyl)phenyl]lithiums, generated easily from 1‐bromo‐2‐(dimethoxymethyl)benzenes 1 , with α‐keto esters gives the corresponding 2‐[2‐(dimethoxymethyl)phenyl]‐2‐hydroxyalkanoates 2 . The TsOH‐catalyzed cyclization of these hydroxy acetals is followed by the oxidation of the resulting cyclic acetals 3 with PCC to give the desired products in satisfactory yields. The reaction of [2‐(dimethoxymethyl)‐4,5‐dimethoxyphenyl]lithium with (MeOC?O)2, followed by treatment with NaBH4 or organolithiums, affords 2‐[2‐(dimethoxymethyl)‐4,5‐dimethoxyphenyl]‐2‐hydroxyalkanoates 6 , which can similarly be transformed into the corresponding 1,3‐dihydro‐3‐oxo‐2‐benzofuran‐1‐carboxylates 7 in reasonable yields.  相似文献   

17.
A convenient one‐pot method for the preparation of (4Z)‐4‐(arylmethylidene)‐5‐ethoxy‐1,3‐oxazolidine‐2‐thiones 2 and 3 from ethyl (2Z)‐3‐aryl‐2‐isothiocyanatoprop‐2‐enoates 1 , which can be easily prepared from ethyl 2‐azidoacetate and aromatic aldehydes, has been developed. Thus, these α‐isothiocyanato α,β‐unsaturated esters were treated with organolithium compounds, including lithium enolates of acetates, to provide 5‐substituted (4Z)‐4‐(arylmethylidene)‐5‐ethoxy‐1,3‐oxazolidine‐2‐thiones, 2 , and 2‐[(4Z)‐(4‐arylmethylidene)‐5‐ethoxy‐2‐thioxo‐1,3‐oxazolidin‐5‐yl]acetates, 3 .  相似文献   

18.
The reaction of 1‐fluoro‐2‐lithiobenzenes, generated from 1‐bromo‐2‐fluorobenzenes 1 and BuLi, with 2‐halobenzaldehydes and subsequent oxidation of the resulting alcohols 2 afforded (2‐fluorophenyl)(2‐halophenyl)methanones 3 , which, on treatment with benzenamines or arylmethanamines, followed by NaH, gave rise efficiently to 10‐aryl‐ or 10‐(arylmethyl)acridin‐9(10H)‐ones ( 5 or 7 ), respectively.  相似文献   

19.
研究了室温下间苯二酚和甲基乙烯基酮分别与β-环糊精( β-CD)形成包结物后的几种不同固相反应,结果表明包结物A(间苯二酚/β-CD)与包结物B(甲基乙烯基酮/β-CD)反应能够很好地得到目的产物,产率及ee值分别为82.8%和78.4%;间苯二酚与包结物B反应仅得到低光学活性产物(ee值为19.5%);包结物A与甲基乙烯基酮反应却没有得到手性目的产物。以熔点、X-粉末衍射、固相核磁碳谱及ROESY多种方法对所形成的包结物进行了表征,包结物中主客体的比例(1:1)通过1H NMR (400 MHz)得以确定,文章对固相环加成反应的机制也进行了初步探讨。  相似文献   

20.
黄斌周舟  蔡明中 《中国化学》2006,24(10):1469-1471
Hydromagnesiation of silylarylacetylenes 1 in diethyl ether gave(E)-β-silylvinyl Grignard reagents 2,whichreacted with trialkylstannyl chlorides 3 to afford stereoselectively(E)-β-silylvinylstannanes 4 in good yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号