首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The star chromatic index of a mulitigraph G, denoted χs(G), is the minimum number of colors needed to properly color the edges of G such that no path or cycle of length four is bi-colored. A multigraph G is stark-edge-colorable if χs(G)k. Dvo?ák et al. (2013) proved that every subcubic multigraph is star 7-edge-colorable, and conjectured that every subcubic multigraph should be star 6-edge-colorable. Kerdjoudj, Kostochka and Raspaud considered the list version of this problem for simple graphs and proved that every subcubic graph with maximum average degree less than 73 is star list-5-edge-colorable. It is known that a graph with maximum average degree 145 is not necessarily star 5-edge-colorable. In this paper, we prove that every subcubic multigraph with maximum average degree less than 125 is star 5-edge-colorable.  相似文献   

2.
A proper edge-k-coloring of a graph G is a mapping from E(G) to {1, 2,..., k} such that no two adjacent edges receive the same color. A proper edge-k-coloring of G is called neighbor sum distinguishing if for each edge uv ∈ E(G), the sum of colors taken on the edges incident to u is different from the sum of colors taken on the edges incident to v. Let χ_Σ'(G) denote the smallest value k in such a coloring of G. This parameter makes sense for graphs containing no isolated edges(we call such graphs normal). The maximum average degree mad(G) of G is the maximum of the average degrees of its non-empty subgraphs. In this paper, we prove that if G is a normal subcubic graph with mad(G) 5/2,then χ_Σ'(G) ≤ 5. We also prove that if G is a normal subcubic graph with at least two 2-vertices, 6 colors are enough for a neighbor sum distinguishing edge coloring of G, which holds for the list version as well.  相似文献   

3.
重图G的星色指数是指对G的边进行正常染色使得没有长为4的路或圈是双色的所需的最小颜色数,记作x'st(G).本文对图的星色指数的结果做了一个总结,给出了一些有趣的证明和技巧,并收集了一些公开问题和猜想.  相似文献   

4.
A star edge-coloring of a graph G is a proper edge coloring such that every 2-colored connected subgraph of G is a path of length at most 3. For a graph G, let the list star chromatic index of G, chs(G), be the minimum k such that for any k-uniform list assignment L for the set of edges, G has a star edge-coloring from L. Dvo?ák et al. (2013) asked whether the list star chromatic index of every subcubic graph is at most 7. In Kerdjoudj et al. (2017) we proved that it is at most 8. In this paper we consider graphs with any maximum degree, we proved that if the maximum average degree of a graph G is less than 145 (resp. 3), then chs(G)2Δ(G)+2 (resp. chs(G)2Δ(G)+3).  相似文献   

5.
A star k-edge-coloring is a proper k-edge-coloring such that every connected bicolored subgraph is a path of length at most 3.The star chromatic indexχ'st(G)of a graph G is the smallest integer k such that G has a star k-edge-coloring.The list star chromatic index ch'st(G)is defined analogously.The star edge coloring problem is known to be NP-complete,and it is even hard to obtain tight upper bound as it is unknown whether the star chromatic index for complete graph is linear or super linear.In this paper,we study,in contrast,the best linear upper bound for sparse graph classes.We show that for everyε>0 there exists a constant c(ε)such that if mad(G)<8/3-ε,then■and the coefficient 3/2 ofΔis the best possible.The proof applies a newly developed coloring extension method by assigning color sets with different sizes.  相似文献   

6.
7.
In this paper the authors generalize the classic random bipartite graph model, and define a model of the random bipartite multigraphs as follows:let m = m(n) be a positive integer-valued function on n and ζ(n,m;{pk}) the probability space consisting of all the labeled bipartite multigraphs with two vertex sets A ={a1,a2,...,an} and B = {b1,b2,...,bm}, in which the numbers tai,bj of the edges between any two vertices ai∈A and bj∈ B are identically distributed independent random variables with distribution P{tai,bj=k}=pk,k=0,1,2,...,where pk ≥0 and ∞Σk=0 pk=1. They obtain that Xc,d,A, the number of vertices in A with degree between c and d of Gn,m∈ζ(n, m;{pk}) has asymptotically Poisson distribution, and answer the following two questions about the space ζ(n,m;{pk}) with {pk} having geometric distribution, binomial distribution and Poisson distribution, respectively. Under which condition for {pk} can there be a function D(n) such that almost every random multigraph Gn,m∈ζ(n,m;{pk}) has maximum degree D(n)in A? under which condition for {pk} has almost every multigraph G(n,m)∈ζ(n,m;{pk}) a unique vertex of maximum degree in A?  相似文献   

8.
A star edge coloring of a graph is a proper edge coloring without bichromatic paths and cycles of length four. In this article, we establish tight upper bounds for trees and subcubic outerplanar graphs, and derive an upper bound for outerplanar graphs.  相似文献   

9.
A star edge-coloring of a graph is a proper edge-coloring without bichromatic paths and cycles of length four. In this paper, we consider the list version of this coloring and prove that the list star chromatic index of every subcubic graph is at most 7, answering the question of Dvořák et al (J Graph Theory, 72 (2013), 313-326).  相似文献   

10.
A multigraph M with maximum degree Δ(M) is called critical, if the chromatic index χ′(M) > Δ(M) and χ′(Me) = χ′(M) − 1 for each edge e of M. The weak critical graph conjecture [1, 7] claims that there exists a constant c > 0 such that every critical multigraph M with at most c · Δ(M) vertices has odd order. We disprove this conjecture by constructing critical multigraphs of order 20 with maximum degree k for all k ≥ 5. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 240–245, 2000  相似文献   

11.
一个图G 的无圈k- 边染色是指G 的一个正常的不产生双色圈的k- 边染色. G 的无圈边色数a′(G) 定义为使得G 有一个无圈k- 边染色的最小的整数k. 本文完全刻画了最大度不为4 的没有K4-图子式的图的无圈边色数.  相似文献   

12.
A star coloring of an undirected graph G is a proper vertex coloring of G (i.e., no two adjacent vertices are assigned the same color) such that no path on four vertices is 2‐colored. The star chromatic number of G is the smallest integer k for which G admits a star coloring with k colors. In this paper, we prove that every subcubic graph is 6‐star‐colorable. Moreover, the upper bound 6 is best possible, based on the example constructed by Fertin, Raspaud, and Reed (J Graph Theory 47(3) (2004), 140–153).  相似文献   

13.
A graph is here called 3- critical if , and for every edge of . The 3-critical graphs include (the Petersen graph with a vertex deleted), and subcubic graphs that are Hajós joins of copies of . Building on a recent paper of Cranston and Rabern, it is proved here that if is 3-critical and not nor a Hajós join of two copies of , then has average degree at least ; this bound is sharp, as it is the average degree of a Hajós join of three copies of .  相似文献   

14.
15.
For graphs of bounded maximum average degree, we consider the problem of 2‐distance coloring, that is, the problem of coloring the vertices while ensuring that two vertices that are adjacent or have a common neighbor receive different colors. We prove that graphs with maximum average degree less than and maximum degree Δ at least 4 are 2‐distance ‐colorable, which is optimal and improves previous results from Dolama and Sopena, and from Borodin et al. We also prove that graphs with maximum average degree less than (resp. , ) and maximum degree Δ at least 5 (resp. 6, 8) are list 2‐distance ‐colorable, which improves previous results from Borodin et al., and from Ivanova. We prove that any graph with maximum average degree m less than and with large enough maximum degree Δ (depending only on m) can be list 2‐distance ‐colored. There exist graphs with arbitrarily large maximum degree and maximum average degree less than 3 that cannot be 2‐distance ‐colored: the question of what happens between and 3 remains open. We prove also that any graph with maximum average degree can be list 2‐distance ‐colored (C depending only on m). It is optimal as there exist graphs with arbitrarily large maximum degree and maximum average degree less than 4 that cannot be 2‐distance colored with less than colors. Most of the above results can be transposed to injective list coloring with one color less.  相似文献   

16.
Dong  Wei  Li  Rui  Xu  Bao Gang 《数学学报(英文版)》2019,35(4):577-582
A strong edge coloring of a graph is a proper edge coloring where the edges at distance at most 2 receive distinct colors. The strong chromatic index χ'_s(G) of a graph G is the minimum number of colors used in a strong edge coloring of G. In an ordering Q of the vertices of G, the back degree of a vertex x of G in Q is the number of vertices adjacent to x, each of which has smaller index than x in Q. Let G be a graph of maximum degree Δ and maximum average degree at most 2 k. Yang and Zhu [J. Graph Theory, 83, 334–339(2016)] presented an algorithm that produces an ordering of the edges of G in which each edge has back degree at most 4 kΔ-2 k in the square of the line graph of G, implying that χ'_s(G) ≤ 4 kΔ-2 k + 1. In this note, we improve the algorithm of Yang and Zhu by introducing a new procedure dealing with local structures. Our algorithm generates an ordering of the edges of G in which each edge has back degree at most(4 k-1)Δ-2 k in the square of the line graph of G, implying that χ'_s(G) ≤(4 k-1)Δ-2 k + 1.  相似文献   

17.
A proper k-edge coloring of a graph G is an assignment of one of k colors to each edge of G such that there are no two edges with the same color incident to a common vertex. Let f(v) denote the sum of colors of the edges incident to v. A k-neighbor sum distinguishing edge coloring of G is a proper k-edge coloring of G such that for each edge uv∈E(G), f(u)≠f(v). By χ'_∑(G), we denote the smallest value k in such a coloring of G. Let mad(G) denote the maximum average degree of a graph G. In this paper, we prove that every normal graph with mad(G) ■ and Δ(G) ≥ 8 admits a(Δ(G) + 2)-neighbor sum distinguishing edge coloring. Our approach is based on the Combinatorial Nullstellensatz and discharging method.  相似文献   

18.
Given a simple plane graph G, an edge‐face k‐coloring of G is a function ? : E(G) ∪ F(G) → {1,…,k} such that, for any two adjacent or incident elements a, bE(G) ∪ F(G), ?(a) ≠ ?(b). Let χe(G), χef(G), and Δ(G) denote the edge chromatic number, the edge‐face chromatic number, and the maximum degree of G, respectively. In this paper, we prove that χef(G) = χe(G) = Δ(G) for any 2‐connected simple plane graph G with Δ (G) ≥ 24. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

19.
20.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and it is denoted by a(G). From a result of Burnstein it follows that all subcubic graphs are acyclically edge colorable using five colors. This result is tight since there are 3-regular graphs which require five colors. In this paper we prove that any non-regular connected graph of maximum degree 3 is acyclically edge colorable using at most four colors. This result is tight since all edge maximal non-regular connected graphs of maximum degree 3 require four colors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号