首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Almonertinib was included in the first-line treatment of non-small cell lung cancer with EGFR T790M mutations by the Chinese Society of Clinical Oncology in 2021. Considering that immunocompromised lung cancer patients are prone to opportunistic fungal infections, and most triazole antifungal drugs are moderate or strong inhibitors of CYP3A4, this study was conducted to develop and validate an accurate and rapid ultra-performance liquid chromatography tandem mass spectrometry method for quantifying almonertinib in plasma and for investigating the pharmacokinetic changes of almonertinib caused by voriconazole and fluconazole in rats. After liquid–liquid extraction with tert-butyl methyl ether, an XSelect HSS T3 column (2.1 × 100 mm, 2.5 μm, Waters) was used for the chromatographic separation of almonertinib and sorafenib-D3 (internal standard). The analytes were detected using an AB Sciex Triple Quad 5,500 mass spectrometer in the positive ionization mode. The method exhibited great linearity (0.5–200 ng/ml, r > 0.997) and stability under the established experimental conditions. All validation experiments were in accordance with the guidelines, and the results were all within the acceptable limits. This method was successfully applied to the researches of pharmacokinetics and drug interactions for almonertinib in rats. Voriconazole and fluconazole significantly altered the pharmacokinetic profiles of almonertinib and increased the systemic exposure of almonertinib in rats to different degrees, but further human trials should be conducted to validate the results.  相似文献   

2.
Evidence gathered in various studies points to the fact that haemanthamine, an isoquinoline alkaloid, has multiple medicinally interesting characteristics, including antitumor, antileukemic, antioxidant, antiviral, anticonvulsant and antimalarial activity. This work presents, for the first time, a universal LC‐MS/MS method for analysis of haemanthamine in plasma, bile and urine which has been verified in a pilot pharmacokinetic experiment on rats. Chromatographic separation was performed on a pentafluorophenyl core–shell column in gradient elution mode with a mobile phase consisting of acetonitrile–methanol–ammonium formate buffer. A sample preparation based on liquid–liquid extraction with methyl tert‐butyl ether was employed with ambelline used as an internal standard. Quantification was performed using LC‐MS‐ESI(+) in Selected Reaction Monitoring mode. The method was validated according to the European Medicines Agency guideline in a concentration range of 0.1–10 μmol/L in plasma, bile and urine. The concentration–time profiles of haemanthamine in plasma, bile and urine after a single i.v. bolus of 10 mg/kg have been described for the first time. The presented study addresses the lack of information on haemanthamine pharmacokinetics and also introduces a new universal method of haemanthamine analysis in complex biological matrices. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
A rapid and sensitive method for simultaneous determination of vincristine and verapamil in rat plasma was first developed and validated, using high‐performance liquid chromatography–tandem mass spectrometry (LC‐MS/MS) in multiple reaction monitoring (MRM) mode via electrospray ionization (ESI). The method, which required a small sample volume (25 µL) of plasma, was linear in the concentration range of 0.5–500 ng/mL for vincristine and 0.1–100.0 ng/mL for verapamil. Finally, the method was successfully employed in a pharmacokinetic study of vincristine and verapamil in rats after an oral administration of a dual‐agent formulation containing vincristine and verapamil. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
This study established a rapid and reliable approach using liquid chromatography–tandem mass spectrometry for the simultaneous determination of cinnamic acid, vanillic acid and protocatechuic acid in rat plasma. This is the first report on a comparative pharmacokinetic study of dispensing granules and standard decoction of Cinnamomum cassia twigs in rats. After liquid–liquid extraction by ethyl acetate, the plasma samples were subjected to LC–MS/MS for multiple reaction monitoring. The standard curves showed good linear regression (r2 > 0.9991) in the range of 10.0–16000 ng/mL. The intra‐ and inter‐day accuracy and precision were found to be within 15% of the nominal concentration. The recoveries of the three phenolics ranged from 88.7 to 105.7%. Finally, this approach was successfully applied to pharmacokinetic analysis of the three phenolics after oral administration of standard decoction and dispensing granules of C. cassia twigs in rats. Although the values of AUC0–t of vanillic acid and protocatechuic acid in standard decoction group were larger than those of the dispensing granule group, no significant difference was observed for the two groups. Of note, the elimination rates of vanillic acid were slower in the standard decoction group than the dispensing granule group.  相似文献   

5.
Docetaxel, frequently used for the treatment of breast cancer, is mainly metabolized via hepatic cytochrome P450 (CYP) 3A in humans and is also a substrate of P‐glycoprotein (P‐gp). Wogonin has been shown to be able to modulate the activities of CYPs and P‐gp, and it could serve as an adjuvant chemotherapeutic agent. However, the impacts of co‐administration of wogonin and docetaxel on their pharmacokinetics have not been studied because of a lack of an analytical method for their simultaneous measurement. In the present study, we established an HPLC–MS/MS method for simultaneous measurement of wogonin and docetaxel in rat plasma, and it was then utilized to explore the pharmacokinetics of wogonin and the herb–drug interactions between wogonin and docetaxel after their combined administration in rats with mammary tumors. The rats received 10, 20 and 40 mg/kg wogonin via oral administration, with or without docetaxel intravenously administered at 10 mg/kg, and the plasma concentrations of wogonin and docetaxel were measured using the established and validated HPLC–MS/MS method. The Cmax and AUC0–t of wogonin were proportionally increased in the dose range from 10 to 40 mg/kg, suggesting a linear pharmacokinetics of wogonin. Moreover, the Cmax and AUC0–t of docetaxel and the AUC0–t of wogonin were increased after co‐administration (p < 0.05), indicating increased in vivo exposures of both wogonin and docetaxel, which might lead to an increase in not only therapeutic but also toxic effects. Thus the alterations of pharmacokinetics should be taken into consideration when wogonin and docetaxel are co‐administered.  相似文献   

6.
Morinda officinalis is a famous traditional Chinese medicine containing iridoid glycoside compounds, such as monotropein and deacetylasperulosidic acid. The aim of the study was to develop a novel and sensitive liquid chromatography–tandem mass spectrometry (LC/MS/MS) method for the simultaneous determination of the two isomeric iridoid glycosides and then evaluate their pharmacokinetic properties in rats. Selected‐reaction monitoring mode was employed for quantification of two analytes in rat plasma. The calibration curves were linear over their respective concentration range with correlation coefficient >0.995 for both analytes. Precision for monotropein and deacetylasperulosidic acid ranged from 2.5 to 11.9% relative standard deviation, and the accuracy of two analytes was ?2.0–3.7 and ?6.4–10.7% relative error, respectively. This method was successfully applied in pharmacokinetic study after oral administration of M. officinalis extract in rats. The results provided a basis for further research on the bioactivity of M. officinalis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
A fast, sensitive and reliable ultra performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed and validated for simultaneous quantitation and pharmacokinetic study of five tanshinones (tanshinone I, tanshinone IIA, tanshinone IIB, dihydrotanshinone I, cryptotanshinone), the bio‐active ingredients of Huo Luo Xiao Ling Dan (HLXLD) in rat plasma. After liquid–liquid extraction, chromatographic separation was accomplished on a Shim‐pack XR‐ODS column (75 × 3.0 mm, 2.2 µm particles) and eluted with a mobile phase consisting of acetonitrile–0.05% formic acid aqueous solution (80:20, v/v) at a flow rate of 0.4 mL/min, and the total run time was 7.0 min. The detection was performed on a triple quadrupole tandem mass spectrometry equipped with an electrospray ionization source in positive ionization and multiple reaction monitoring mode. The lower limits of quantification were 0.050–0.400 ng/mL for all the analytes. Linearity, precision and accuracy, the mean extraction recoveries and matrix effects all satisfied criteria for acceptance. This validated method was successfully applied to a comparative pharmacokinetic study of five bio‐active components in rat plasma after oral administration of HLXLD or Salvia miltiorrhiza extract in normal and arthritic rats. The results showed that there were different pharmacokinetic characteristics among different groups. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
In this study, a specific and quick ultra-performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) method was fully developed and validated for simultaneous measurement of the rat plasma levels of vortioxetine (VOR), Lu AA34443 (the major metabolite of VOR), fluoxetine and its metabolite norfluoxetine with diazepam as the internal standard (IS). After a simple protein precipitation with acetonitrile for sample preparation, the separation of the analytes were performed on an Acquity UPLC BEH C18 (2.1 × 50 mm, 1.7 μm) column, with acetonitrile and 0.1% formic acid in water as mobile phase by gradient elution. The detection was achieved on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring mode via an electrospray ionization source. Good linearity was observed in the calibration curve for each analyte. The data of precision, accuracy, matrix effect, recovery and stability all conformed to the bioanalytical method validation of acceptance criteria of US Food and Drug Administration recommendations. The newly developed UPLC–MS/MS method allowed simultaneous quantification of VOR, fluoxetine and their metabolites for the first time and was successfully applied to a pharmacokinetic study in rats.  相似文献   

9.
A sensitive and rapid ultra performance liquid chromatography tandem mass spectrometry (UPLC‐MS/MS) method was developed to determine voriconazole in human plasma. Sample preparation was accomplished through a simple one‐step protein precipitation with methanol. Chromatographic separation was carried out on an Acquity UPLC BEH C18 column using an isocratic mobile phase system composed of acetonitrile and water containing 1% formic acid (45:55, v/v) at a flow rate of 0.50 mL/min. Mass spectrometric analysis was performed using a QTrap5500 mass spectrometer coupled with an electrospray ionization source in the positive ion mode. The multiple reaction monitoring transitions of m/z 351.0 → 281.5 and m/z 237.1 → 194.2 were used to quantify voriconazole and carbamazepine (internal standard), respectively. The linearity of this method was found to be within the concentration range of 2.0–1000 ng/mL with a lower limit of quantification of 2.0 ng/mL. Only 1.0 min was needed for an analytical run. This fully validated method was successfully applied to the pharmacokinetic study after oral administration of 200 mg voriconazole to 20 Chinese healthy male volunteers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The pharmacokinetic profile of 99/411, a novel anti‐malarial drug, was established in rats (12 mg/kg of body weight) and monkeys (20 mg/kg of body weight). Following oral administration, the presence of 99/411 was rapidly determined in rat plasma, tissues, urine, feces and monkey plasma using a validated LC–MS/MS method. The tissue distribution studies in rats indicated that the drug was partially distributed in all major tissues and plasma, and peak concentration levels were achieved within 0.5–4 h. Area under the curve in different rat tissues and plasma was found in order of blood > lung > intestine > heart > muscle > brain > kidney > spleen > liver. The total recoveries (within 86 h) of 99/411 were <0.0017% and <0.08% in urine and feces, respectively. The peak plasma concentration was 3499 ng/mL in rats after ~2 h of oral administration and 697–767 ng/mL in monkeys after ~6 h of oral administration. No plasma accumulation was observed in both male and female monkeys, even after multiple dosing. The preclinical pharmacokinetic profile and tissue distribution data are expected to assist in future clinical explorations of 99/411 as a promising anti‐malarial agent.  相似文献   

11.
Isoginkgetin is a biflavonoid compound isolated from the leaf extracts of Ginkgo biloba. In this study, an liquid chromatography–tandem mass spectrometry (LC/MS/MS) with liquid–liquid extraction was developed and validated for the analysis of isoginkgetin in rat plasma. In the process of chromatographic separation, selected reaction monitoring transitions for isoginkgetin and IS were m/z 566.8 → 134.7 and m/z 430.8 → 269.3, respectively. The validation parameters including selectivity, linearity, LLOQ, accuracy, precision, matrix effect, stability and recovery were satisfactory. The intra‐ and inter‐batch precision (RSD) were <12.1% in plasma, while the accuracy (RE) was within ±14.3%. This method was employed in a pharmacokinetic study on rats after the intravenous administration of isoginkgetin.  相似文献   

12.
A rapid and sensitive liquid chromatography tandem mass spectrometry (LC–MS/MS) method was developed and validated for the simultaneous determination of two baccharane glycosides (hosenkoside A and hosenkoside K) of total saponins of Semen Impatientis in rat plasma using mogroside V as the internal standard (IS). The analytes were separated using a C18 RP Agilent XDB column (1.8 μm, 50 × 2.1 mm i.d.) and detection of the compounds was done using a TSQ Quantum triple quadrupole mass spectrometer coupled with a negative electrospray ionization source under selection reaction monitoring mode. According to the US Food and Drug Administration guidelines, the established method was fully validated and the results were proved within acceptable limits. The lower limits of quantification of both analytes were 5 ng/mL. The validated method was successfully applied to a pharmacokinetic study of orally administered the total saponins of Semen Impatientis in rats.  相似文献   

13.
In this study, a sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed and validated for the quantification of demethylzeylasteral in rat plasma. Electrospray ionization was operated in the negative ion mode while demethylzeylasteral and oleanolic acid (internal standard) were measured by selected reaction monitoring (demethylzeylasteral: m/z 479.2 → 436.0; oleanolic acid: m/z 454.9 → 407.2). This LC–MS/MS method had good selectivity, sensitivity, accuracy and precision. The pharmacokinetic profiles of demethylzeylasteral were subsequently examined in Wistar rats after oral or intravenous administration.  相似文献   

14.
Three liquid chromatography–tandem mass spectrometry (LC‐MS/MS) methods were respectively developed and validated for the simultaneous or independent determination of taurine and edaravone in rat plasma using 3‐methyl‐1‐p‐tolyl‐5‐pyrazolone and sulfanilic acid as the internal standards (IS). Chromatographic separations were achieved on an Agilent Zorbax SB‐Aq (100 × 2.1 mm, 3.5 µm) column. Gradient 0.03% formic acid–methanol, isocratic 0.1% formic acid–methanol (90:10) and 0.02% formic acid–methanol (40:60) were respectively selected as the mobile phase for the simultaneous determination of two analytes, taurine or edaravone alone. The MS acquisition was performed in multiple reaction monitoring mode with a positive and negative electrospray ionization source. The mass transitions monitored were m/z [M + H]+ 175.1 → 133.0 and [M + H]+ 189.2 → 147.0 for edaravone and its IS, m/z [M ? H]? 124.1 → 80.0 and [M ? H]? 172.0 → 80.0 for taurine and its IS, respectively. The validated methods were successfully applied to study the pharmacokinetic interaction of taurine and edaravone in rats after independent intravenous administration and co‐administration with a single dose. Our collective results showed that there were no significant alterations on the main pharmacokinetic parameters (area under concentration–time curve, mean residence time, half‐life and clearance) of taurine and edaravone, implying that the proposed combination therapy was pharmacologically feasible. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
A rapid and sensitive high‐performance LC‐MS/MS method was developed and validated for the simultaneous quantification of codeine and its metabolite morphine in human plasma using donepezil as an internal standard (IS). Following a single liquid‐liquid extraction with ethyl acetate, the analytes were separated using an isocratic mobile phase on a C18 column and analyzed by MS/MS in the selected reaction monitoring mode using the respective [M+H]+ ions, mass‐to‐charge ratio (m/z) 300/165 for codeine, m/z 286/165 for morphine and m/z 380/91 for IS. The method exhibited a linear dynamic range of 0.2–100/0.5–250 ng/mL for codeine/morphine in human plasma, respectively. The lower LOQs were 0.2 and 0.5 ng/mL for codeine and its metabolite morphine using 0.5 mL of human plasma. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.0 min for each sample made it possible to analyze more than 300 human plasma samples per day. The validated LC‐MS/MS method was applied to a pharmacokinetic study in which healthy Chinese volunteers each received a single oral dose of 30 mg codeine phosphate.  相似文献   

16.
In the present study, a simple, rapid and reliable ultrahigh‐performance liquid chromatography–tandem mass spectrometric (UHPLC–MS/MS) method was developed and validated to determine simultaneously epalrestat (EPA) and puerarin (PUE) in rat plasma for evaluation of the pharmacokinetic interaction of these two drugs. Both the analytes and glipizide (internal standard, IS) were extracted using a protein precipitation method. The separation was performed on a C18 reversed phase column using acetonitrile and 5 mmol/L ammonium acetate in water as the mobile phase with a gradient elution program. The analytes, including IS, were quantified with multiple reaction monitoring under negative ionization mode. The optimized mass transition ion pairs (m /z ) were 318.1 → 274.0 for EPA, 415.1 → 266.9 for PUE and 444.2 → 166.9 for IS. The linear calibration curves for EPA and PUE were obtained in the concentration ranges of 10–4167 and 20–8333 ng/mL, respectively (r > 0.99). The current method was successfully applied for the pharmacokinetic interaction study in rats following administration of EPA and PUE alone or co‐administration (EPA 15 mg/kg, oral; PUE 30 mg/kg, intravenous). The results showed that the combination of EPA and PUE could increase t 1/2 of EPA and reduce T max of EPA. These changes indicated that EPA and PUE might cause drug–drug interactions when co‐administrated.  相似文献   

17.
A sensitive and reliable high‐performance liquid chromatography–mass spectrometry (LC–MS/MS) was developed and validated for simultaneous quantification IC87114, roflumilast (RFM), and its active metabolite roflumilast N‐oxide (RFN) using tolbutamide as an internal standard. The analytes were extracted by using liquid–liquid extraction and separated on a reverse phase C18 column (50 mm × 3 mm i.d., 4.6 µ) using methanol: 2 mM ammonium acetate buffer, pH 4.0 as mobile phase at a flow rate 1 mL/min in gradient mode. Selective reaction monitoring was performed using the transitions m/z 398.3 > 145.9, 403.1 >186.9, 419.1 > 187.0 and 271.1 > 155.0 to quantify quantification IC87114, RFM, RFN and tolbutamide, respectively. The method was validated over the concentration range of 0.1–60 ng.mL?1 for RFM and RFN and 6 to 2980 ng.mL?1 for IC87114. Intra‐ and inter‐day accuracy and precision of validated method were within the acceptable limits of <15% at all concentrations. Coefficients of correlation (r2) for the calibration curves were >0.99 for all analytes. The quantitation method was successfully applied for simultaneous estimation of IC87114, RFM and RFN in a pharmacokinetic drug–drug interaction study in Wistar rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
A highly sensitive and specific LC‐ESI‐MS/MS method has been developed and validated for simultaneous quantification of felodipine (FDP) and metoprolol (MPL) in rat plasma (50 μL) using phenacetin as an internal standard (IS) as per the FDA guidelines. Liquid–liquid extraction method was used to extract the analytes and IS from rat plasma. The chromatographic resolution of FDP, MPL and IS was achieved with a mobile phase consisting of 0.2% formic acid in water–acetonitrile (25:75, v/v) with a time program flow gradient on a C18 column. The total chromatographic run time was 4.0 min and the elution of FDP, MPL and IS occurred at 1.05, 2.59 and 1.65 min, respectively. A linear response function was established for the range of concentrations 0.59–1148 and 0.53–991 ng/mL for FDP and MPL, respectively, in rat plasma. The intra‐ and inter‐day accuracy and precision values for FDP and MPL met the acceptance as per FDA guidelines. FDP and MPL were stable in battery of stability studies viz., bench‐top, auto‐sampler and freeze–thaw cycles. The validated assay was applied to a pharmacokinetic study in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Tacrine, as a drug for treating Alzheimer's disease (AD), has low efficacy owing to its single function and serious side effects. However, tacrine‐6‐ferulic acid (T6FA), the dimer which added ferulic acid to tacrine, has been found to be a promising multifunctional drug candidate for AD and much more potent and selective on acetylcholinesterase (AChE) than tacrine. The aim of the present work was to develop and validate an LC‐MS/MS method with electrospray ionization for the quantification of T6FA in rat plasma using tacrine‐3‐ferulic acid (T3FA) as internal standard and to examine its application for pharmacokinetic study in rats. Following a single liquid–liquid extraction with ethyl acetate, chromatographic separation was achieved at 25 °C on a BDS Hypersil C18 column with a mobile phase composed of 1% formic acid and methonal (30:70, v/v) at a flow rate of 0.2 mL/min. Quantification was achieved by monitoring the selected ions at m/z 474.2 → 298.1 for T6FA and m/z 432.2 → 199.0 for T3FA. The method was validated to be rapid, specific, accurate and precise over the concentration range of 0.5–1000.0 ng/mL in rat samples. Furthermore, it was successfully applied for the pharmacokinetic measurement of T6FA with an oral administration at 40 mg/kg to rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号