首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A novel electrochemical sensor for sensitive detection of methyldopa at physiological pH was developed by the bulk modification of carbon paste electrode (CPE) with graphene oxide nanosheets and 3‐(4′‐amino‐3′‐hydroxy‐biphenyl‐4‐yl)‐acrylic acid (3,′AA). Applying square wave voltammetry (SWV), in phosphate buffer solution (PBS) of pH 7.0, the oxidation current increased linearly with two concentration intervals of methyldopa, one is 1.0×10?8–1.0×10?6 M and the other is 1.0×10?6–4.5×10?5 M. The detection limit (3σ) obtained by SWV was 9.0 nM. The modified electrode was successfully applied for simultaneous determination of methyldopa and hydrochlorothiazide. Finally, the proposed method was applied to the determination of methyldopa and hydrochlorothiazide in some real samples.  相似文献   

2.
《Electroanalysis》2017,29(6):1618-1625
An electrochemical sensor was developed based on gold nanoparticles incorporated in mesoporous MFI zeolite for the determination of purine bases. Au nanoparticles (AuNPs) were incorporated into the mesoporous MFI zeolite (AuNPs/m‐MFI) by post‐grafting reaction. The composite materials were characterized by transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS) and electrochemical methods. Au nanoparticles with a size of 5‐20 nm are uniformly dispersed in the pores of mesoporous MFI zeolite. And the morphology of MFI zeolite can be perfectly kept after pore expansion and Au nanoparticles incorporation. The electrocatalytic oxidation of purine bases (guanine and adenine in DNA) is investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The surface‐confined Au nanoparticles provide the good catalytic activity for oxidation of purine bases. The simultaneous detection of guanine and adenine can be achieved at AuNPs/m‐MFI composites modified glassy carbon electrode (GCE). The electrochemical sensor based on AuNPs/m‐MFI exhibits wide linear range of 0.5–500 μM and 0.8–500 μM with detection limit of 0.25 and 0.29 μM for guanine and adenine, respectively. Moreover, the electrochemical sensor is applied to evaluation of guanine and adenine in herring sperm DNA samples with satisfactory results.  相似文献   

3.
《Electroanalysis》2017,29(5):1301-1309
A sensitive electrochemical sensor was fabricated based on ceria‐graphene oxide nanoribbons composite (CeO2‐GONRs) for an antiviral drug, entecavir (ETV). It was characterized by SEM, EDAX, AFM, IR and Raman spectroscopic techniques. The electrochemical behaviour of ETV was investigated by cyclic voltammetric, differential pulse voltammetric (DPV), linear sweep voltammetric (LSV) and square wave voltammetric (SWV) methods at CeO2‐GONRs modified glassy carbon electrode. Good linearity was observed between the peak current and concentration of ETV in the range of 0.51 ‐ 100 μM with a detection limit of 0.042 μM in DPV method, 2.1 – 61.1 μM with a detection limit of 0.7 μM in LSV method and 0.1 ‐ 80 μM with a detection limit of 68.1 nM in SWV method. The proposed sensitive DPV method was successfully applied for the determination ETV in tablets and biological samples.  相似文献   

4.
《中国化学会会志》2018,65(5):603-612
In this work, the electrochemical oxidation of methanol was investigated by different electrochemical methods at a carbon paste electrode (CPE) modified with (N‐5‐methoxysalicylaldehyde, N´‐2‐hydroxyacetophenon‐1, 2 phenylenediimino nickel(II) complex (Ni(II)–MHP) and reduced graphene oxide (RGO), which is named Ni(II)‐MHP/RGO/CPE, in an alkaline solution. This modified electrode was found to be efficient for the oxidation of methanol. It was found that methanol was oxidized by the NiOOH groups generated by further electrochemical oxidation of nickel(II) hydroxide on the surface of the modified electrode. Under optimum conditions, some parameters of the analyte (MeOH), such as the electron transfer coefficient (α), the electron transfer rate constant) ks), and the diffusion coefficient of species in a 0.1 M solution (pH = 13), were determined. The designed sensor showed a linear dynamic range of 2.0–100.0 and 100.0–1000.0 μM and a detection limit of 0.68 μM for MeOH determination. The Ni(II)‐MHP/RGO/CPE sensor was used in the determination of MeOH in a real sample.  相似文献   

5.
Cobalt microparticles (Co MPs) modified Pt electrode is simply and conveniently fabricated. The electrochemical properties of paracetamol (PCT) at the prepared modified electrode are investigated using cyclic voltammetry (CV) and square wave voltammetry (SWV) measurements. Based on these techniques, a sensitive and rapid electrochemical method is developed for the determination of PCT. The result indicates that the oxidation of PCT is strongly improved at the Co MPs/Pt electrode as compared with the bare Pt electrode, with relatively high sensitivity, stability and life time. The determination of PCT on the Co MPs/Pt with square wave voltammetry displays a high sensitivity of 101 μA/mM and a low detection limit of 0.42 μM (S/N = 3) in the range (0.5–100 μM). The sensitivity of the modified electrode for the detection of PCT is almost 17 times greater than on the bare Pt electrode. The proposed method is successfully applied to the PCT determination in tablets.  相似文献   

6.
An electrochemical sensor based on Zinc oxide nanoparticles (ZnONPs) modified carbon paste electrode was designed for the toxic diuron pesticide detection. The ZnONPs were synthesized through the hydrothermal route and their structural properties were investigated via scanning electron microscopy (SEM) and X-ray diffraction powder (XRD). The designed ZnONPs-modified carbon paste electrode (ZnONPs-CPE) was characterized using cyclic voltammetry and electrochemical impedance spectroscopy. The sensor showed significantly enhanced sensitivity on the diuron oxidation peak current, compared to the bare carbon paste electrode. Qualitative and quantitative analysis were performed using cyclic voltammetry (CV) and square wave voltammetry (SWV). Experimental parameters such as pH, amount of ZnONPs and frequency were evaluated and the optimized conditions were obtained with 0.1 M phosphate buffer solution at pH=8, a frequency of 50 Hz and a quantity of 5 mg of ZnONPs. Under these conditions, linear responses ranging from 1.3 to 7.7 μM and 8.6 to 30 μM of diuron were obtained, with correlation coefficients of R2=0.994 and 0.996 respectively. Detection and quantification limits of 0.22 μM and 0.84 μM (S/N=3) were respectively achieved based on the 3σ method. The interference of some ions on the oxidation peak of diuron on ZnONPs-CPE was also evaluated and no interference was observed, therefore demonstrating the selectivity of the sensor. The proposed sensor, designed with ecofriendly materials, is sensitive, selective and was effectively used for diuron determination in soils and water samples with recoveries ranging from 98 % to 101.5 %.  相似文献   

7.
A new sensor based on the grafting of 4‐tert‐butylcatechol on the surface of a glassy carbon electrode (GC) was developed for the catalytic oxidation of homocysteine ( Hcy ). The GC‐modified electrode exhibited a reversible redox response at neutral pH. Under the optimum conditions cyclic voltammetric results indicated the excellent electrocatalytic activity of modified electrode toward the oxidation of Hcy at reduced over‐potential about 350 mV. A linear dynamic range of 0.01–3.0 mM and a detection limit of 1.0 µM were obtained for Hcy . The modified electrode was used as an electrochemical sensor for selective determination of Hcy in human blood.  相似文献   

8.
A novel CdTe quantum dots‐modified carbon paste electrode (QDMCPE) was fabricated and used to study the electrooxidation of dopamine and uric acid and their mixtures by electrochemical methods. Using square wave voltammetry (SWV), a highly sensitive and simultaneous determination of dopamine and uric acid was explored at the modified electrode. SWV peak currents of dopamine and uric acid increased linearly with their concentrations in the ranges of 7.5×10?8–6.0×10?4 M, and 7.5×10?6–1.4×10?3 M, respectively. Finally this new sensor was used for determination of dopamine and uric acid in some real samples.  相似文献   

9.
A carbon paste electrode that was chemically modified with 3-(4'-amino-3'-hydroxy-biphenyl-4-yl)-acrylic acid (3,4-AA) was used as a selective electrochemical sensor for the detection of hydroxylamine. Cyclic voltammetry (CV), choronoamperometry (CHA) and square wave voltammetry (SWV) were used to investigate oxidation of hydroxylamine in aqueous solution. Under optimized concentration the electrocatalytic oxidation current peak for hydroxylamine increased linearly with concentration in the range of 0.025–10.0 μM. The detection limits for hydroxylamine was 0.012 μM. Finally, the modified electrode was applied to detection hydroxylamine in water samples.  相似文献   

10.
《Electroanalysis》2018,30(9):1946-1955
In this paper, a rapid and sensitive modified electrode for the simultaneous determination of hydroquinone (HQ) and bisphenol A (BPA) is proposed. The simultaneous determination of these two compounds is extremely important since they can coexist in the same sample and are very harmful to plants, animals and the environment in general. A carbon paste electrode (CPE) was modified with silver nanoparticles (nAg) and polyvinylpyrrolidone (PVP). The PVP was used as a reducing and stabilizing agent of nAg from silver nitrate in aqueous media. The nAg‐PVP composite obtained was characterized by transmission electron microscopy and UV‐vis spectroscopy. The electrochemical behavior of HQ and BPA at the nAg‐PVP/CPE was investigated in 0.1 mol L−1 B−R buffer (pH 6.0) using cyclic voltammetry (CV) and square wave voltammetry (SWV). The results indicate that the electrochemical responses are improved significantly with the use of the modified electrode. The calibration curves obtained by SWV, under the optimized conditions, showed linear ranges of 0.09–2.00 μmol L−1 for HQ (limit of detection 0.088 μmol L−1) and 0.04–1.00 μmol L−1 for BPA (limit of detection 0.025 μmol L−1). The modified electrode was successfully applied in the analysis of water samples and the results were comparable to those obtained using UV‐vis spectroscopy.  相似文献   

11.
Cysteine monolayer has been assembled onto bare gold electrode (SAM/Au), and subsequently deoxyribonucleic acid (DNA) has been successfully immobilized at the SAM/Au electrode. The thus modified electrode is assigned DNA/SAM/Au. Modification steps of the electrode were followed electrochemically using K4[Fe(CN6)] electrochemical marker. Also, the build‐up of the modified electrode composition is followed using EDX and the crystallographic orientation is inspected using XRD. The electrochemical behavior of paracetamol (PC) at DNA/SAM/Au electrode is investigated. Interestingly, the sluggish irreversible behavior of PC at the bare gold electrode is converted to a quasi‐reversible one at DNA/SAM/Au electrode pointing to some interaction between the immobilized DNA and PC. The enhanced electrochemical behavior of PC at modified DNA/SAM/Au electrode is successfully used for a sensitive electrochemical determination of PC. Square wave voltammetry (SWV) was used for this purpose. The concentration of PC was in linear relation with the peak current at the optimum conditions within the range 10.0–110.0 μg mL?1 with correlation coefficient (R2) of 0.998. Also, the standard deviation (SD) and relative standard deviation (RSD) were calculated and found to be 0.817 and 1.52, respectively, indicating the significance of the present method.  相似文献   

12.
Electrochemical oxidation of vanillin (VAN) in the presence of caffeine (CAF) was studied on a gold (Au) electrode modified with 3‐amino‐1,2,4‐triazole‐5‐thiol (ATT) film by using differential pulse voltammetry (DPV) and cyclic voltammetry (CV) method. The formation of the ATT film on the Au electrode surface was characterized by the CV, fourier transform infrared spectroscopy (FTIR) and impedance spectroscopy (EIS) methods. A single irreversible oxidation peak of the VAN was obtained by using the CV method. The determination of VAN in the presence of CAF was carried out at pH 4 in Britton Robinson buffer (BR) by the DPV method. Under the optimal conditions, the oxidation peak current was proportional to the concentration of VAN in the range of 1.1 μM to 76.4 μM in the presence of CAF with the correlation coefficient of 0.997 and the detection limit of 0.19 μM (S/N=3). The selective determination of VAN in a commercial coffee sample was carried out with satisfactory results on the ATT‐Au modified electrode.  相似文献   

13.
A stable dihydroxybenzene sensor was fabricated by electrochemical deposition of Zn/Al layered double hydroxide film on glassy carbon electrode (LDHf/GCE). The sensitive and facile electrochemical method for the simultaneous determination of catechol (CA) and hydroquinone (HQ) under coexistence of resorcinol (RE) has been achieved at the LDHf/GCE in phosphate buffer solution (pH 6.5). Under the optimized conditions, the differential pulse voltammetry response of the modified electrode to CA (or HQ) shows a linear concentration range of 0.6 μM to 6.0 mM (or 3.2 μM to 2.4 mM) with a correlation coefficient of 0.9987 (or 0.9992) and the calculated limit of detection is 0.1 μM (or 1.0 μM) at a signal‐to‐noise ratio of 3. In the presence of 50 μM isomer, the linear concentration ranges for CA and HQ are 3.0 μM to 1.5 mM and 12.0 μM to 0.8 mM, respectively. The detection limits are 1.2 μM and 9.0 μM. Further, the proposed method has been performed to successfully detect dihydroxybenzene isomers in analysis of real samples, such as water and tea.  相似文献   

14.
《Electroanalysis》2005,17(10):873-879
A highly sensitive and fast responding sensor for the determination of morphine is described. The multiwall carbon nanotubes immobilize on preheated glassy carbon electrode (5 min at 50 °C) by gently rubbing of electrode surface on a filter paper supporting the carbon nanotubes.The results indicated that carbon nanotubes(CNTs) modified glassy carbon electrode exhibited efficiently electrocatalytic oxidation for morphine with relatively high sensitivity, stability and long life. Under conditions of cyclic voltammetry, the potential for oxidation of morphine is lowered by approximately 100 mV and the current is enhanced significantly (10 times) in comparison to the bare glassy carbon electrode at wide pH range (2–9). The electrocatalytic behavior is further exploited as a sensitive detection scheme for morphine determination by hydrodynamic amperometry. Under the optimized conditions the calibration plots are linear in the concentration range 0.5–150 μM with the calculated detection limit (S/N=3) of 0.2 μM and sensitivity of 10 nA/μM and a relative standard deviation (RSD) of 2.5% (n=10). The amperometric response is extremely stable, with no loss in sensitivity over a continual 30 min operation. Such attractive ability of multiwall carbon nanotubes (MWCNTs) modified GC electrode, suggests great promise for a morphine amperometric sensor. Finally the ability of the modified electrode was evaluated for simultaneous determination of morphine and codeine.  相似文献   

15.
A novel and reliable direct electrochemical method has been established to monitor DNA damage in acid hydrolyzed calf thymus DNA, based on the determination of 2,8‐dihydroxyadenine (2,8‐DHA). A single‐wall carbon nanotubes (SWCNT) modified edge plane pyrolytic graphite electrode (EPPGE) has been used as a sensor to monitor the DNA damage. 2,8‐DHA the main in vivo adenine oxidation product undergoes oxidation at ~395 mV at SWCNT modified EPPGE using square wave voltammetry (SWV). The sensor exhibits potent and persistent electron‐mediating behavior. A well‐defined oxidation peak for the oxidation of 2,8‐DHA was observed at modified electrode with lowering of peak potential and increase in peak current as compared to bare EPPGE. At optimal experimental conditions, the catalytic oxidative peak current was responsive with the 2,8‐DHA concentrations ranging from 0.05 nM to 100 nM. The detection limit was 3.8×10?11 M and limit of quantification was 1.27×10?10 M. The modified electrode exhibited high stability and reproducibility.  相似文献   

16.
Narang J  Chauhan N  Pundir CS 《The Analyst》2011,136(21):4460-4466
We describe the construction of a polyaniline (PANI), multiwalled carbon nanotubes (MWCNTs) and gold nanoparticles (AuNPs) modified Au electrode for determination of hydrogen peroxide without using peroxidase (HRP). The AuNPs/MWCNT/PANI composite film deposited on Au electrode was characterized by Scanning Electron Microscopy (SEM) and electrochemical methods. Cyclic voltammetric (CV) studies of the electrode at different stages of construction demonstrated that the modified electrode had enhanced electrochemical oxidation of H(2)O(2), which offers a number of attractive features to develop amperometric sensors based on split of H(2)O(2). The amperometric response to H(2)O(2) showed a linear relationship in the range from 3.0 μM to 600.0 μM with a detection limit of 0.3 μM (S/N = 3) and with high sensitivity of 3.3 mA μM(-1). The sensor gave accurate and satisfactory results, when employed for determination of H(2)O(2) in milk and urine.  相似文献   

17.
A novel electrochemical sensor based on nanocellulose‐carbon nanoparticles (NC‐CNPs) nanocomposite film modified glassy carbon electrode (GCE) is developed for the analysis of metoclopramide (MCP). Atomic force microscopy, scanning electron microscopy and electrochemical impedance spectroscopy were used to characterize the roughness, surface morphology and performance of the deposited modifier film on GCE. SEM image demonstrated that modifier nanoparticles are uniformly deposited on GCE, with an average size of less than 50 nm. The electrochemical behavior of MCP and its oxidation product is studied using linear sweep and cyclic voltammetry over a wide pH range on NC‐CNPs modified glassy carbon electrode. The results revealed that the oxidation of MCP is an irreversible and pH‐dependent process that proceeds in an adsorption‐controlled mechanism and results in the formation of a main oxidation product, which adsorbs on the surface of NC‐CNPs/ GCE. The modified electrode showed a distinctive anodic response towards MCP with a considerable enhancement (49 fold) compared to the bare GCE. Under the optimized conditions, the modified electrode exhibited a wide linear dynamic range of 0.06–2.00 µM with a detection limit of 6 nM for the voltammetric determination of MCP. The prepared modified electrode showed several advantages such as simple preparation method, high stability, reproducibility, and repetitive usability. The modified electrode is successfully applied for the accurate determination of trace amounts of MCP in pharmaceutical and clinical preparations.  相似文献   

18.
A selective and sensitive electrode based on Au−S bonds between As(III) ion-imprinted polymer (IIP) and the flower-like gold nanoparticles (FL-AuNPs) had been rationally developed for detecting As(III) by using the square wave voltammetry (SWV) method. Under optimized measurement conditions, the prepared electrochemical sensor exhibited obvious detection performance of As(III) in the range of 0.009 μg/L–0.50 μg/L with a relatively low detection limit of 0.015 μg/L. Furthermore, the imprinted electrochemical sensor displayed good reusability, excellent specificity, and demonstrated high potential for environmental control with a recovery rate between 80.7 % and 113.3 %.  相似文献   

19.
《Electroanalysis》2004,16(23):1938-1943
An organically modified sol‐gel glass (ORMOSIL) encapsulating pyrroloquinoline quinone (PQQ)‐modified electrode for the rapid, sensitive and simple determination of thiol‐containing compounds such as cysteine and glutathione is reported. The effect of applied potential, nature of thiol compound and pH on the response of the sensor was examined and optimum conditions were determined. The electrochemical responses and detection limits were found to be sensitive to the nature of thiols and pH. The electrochemical responses for cysteine and glutathione at an applied potential of ?0.2 V (vs. Ag/AgCl) were found to be linear with detection limits of 18 nM for cysteine and 36 nM for glutathione at pH 3.5, whereas the detection limits at pH 8.5 were 0.5 μM for cysteine and 1 μM for glutathione. The electrode retained 95% of the original response for 7 days when stored at 4 °C. The ORMOSIL‐encapsulated PQQ was also characterized by spectrophotometry. The absorbance measurement using 5,5′‐dithiobis(2‐nitrobenzoic acid) at 412 nm justify the PQQ‐mediated oxidation of glutathione whereas fluorescence measurements (excitation wavelength=380 nm; emission wavelength=480 nm) justify the successful encapsulation of PQQ in ORMOSIL matrix.  相似文献   

20.
A novel carbon paste electrode modified with nanosized mesoporous MCM-41 was prepared, and used as an electrochemical sensor to study the electro oxidation of levodopa (LD), carbidopa (CD) and their mixtures. Using differential pulse voltammetry (DPV), a highly selective and simultaneous determination of LD and CD has been explored at the modified electrode. The electrochemical sensor displayed a good resolving function for the overlapping voltammetric responses of LD and CD into two separate peaks with a potential difference of 370 mV. DPV peak currents of LD increased linearly with concentration over the 0.13 μM to 1250.00 μM range and exhibited a detection limit of 0.072 μM. Also, the proposed electrochemical sensor was used for the determination of LD and CD in some real samples, using the standard addition method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号