共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Tino P. Golub Dr. Christian Merten 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(11):2349-2353
Spectroscopic characterizations of key reaction intermediates are often considered the final confirmation of a reaction mechanism. This proof-of-principle study showcases the application of vibrational circular dichroism (VCD) spectroscopy for the characterization of in situ generated reaction intermediates using the key intermediates of enamine catalysis of Jørgensen–Hayashi-type prolinol ether catalysts as model system. By comparison of experimental and computed spectra, the enamines are shown to preferentially adopt an anti-conformation with E-configured C=C bond. For the parent prolinol catalyst, the structure and stereochemistry of the oxazolidine side product is determined as well. This study thus demonstrates that VCD spectra can provide insights into structural preferences of organocatalysts that utilize a covalent activation mechanism. Thereby it outlines new fields of applications for VCD spectroscopy and finally adds the technique to the toolbox of physical organic chemistry for in-depth mechanistic studies. 相似文献
4.
Benjamin H. Strudwick Mark A. J. Koenis Hans J. Sanders Valentin P. Nicu Sander Woutersen Prof. Wybren Jan Buma 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(54):12560-12566
Vibrational circular dichroism (VCD) studies are reported on a chiral compound in which a fullerene C60 moiety is used as an electron acceptor and local VCD amplifier for an alanine-based peptide chain. Four redox states are investigated in this study, of which three are reduced species that possess low-lying electronic states as confirmed by UV/Vis spectroelectrochemistry. VCD measurements in combination with (TD)DFT calculations are used to investigate (i) how the low-lying electronic states of the reduced species modulate the amplification of VCD signals, (ii) how this amplification depends on the distance between oscillator and amplifier, and (iii) how the spatial extent of the amplifier influences amplification. These results pave the way for further development of tailored molecular VCD amplifiers. 相似文献
5.
Switchable Amplification of Vibrational Circular Dichroism as a Probe of Local Chiral Structure 下载免费PDF全文
Dr. Sérgio R. Domingos M. Sc. Hans J. Sanders Prof. Dr. František Hartl Prof. Dr. Wybren J. Buma Prof. Dr. Sander Woutersen 《Angewandte Chemie (International ed. in English)》2014,53(51):14042-14045
A new method to detect the vibrational circular dichroism (VCD) of a localized part of a chiral molecular system is reported. A local VCD amplifier was implemented, and the distance dependence of the amplification was investigated in a series of peptides. The results indicate a characteristic distance of 2.0±0.3 bonds, which suggests that the amplification is a localized phenomenon. The amplifier can be covalently coupled to a specific part of a molecule, and can be switched ON and OFF electrochemically. By subtracting the VCD spectra obtained when the amplifier is in the ON and OFF states, the VCD of the local environment of the amplifier can be separated from the total VCD spectrum. Switchable local VCD amplification thus makes it possible to “zoom in” on a specific part of a chiral molecule. 相似文献
6.
Wei Zhuang Dr. Tomoyuki Hayashi Dr. Shaul Mukamel Prof. 《Angewandte Chemie (International ed. in English)》2009,48(21):3750-3781
Good vibrations : The vibrational response of complex molecules to sequences of infrared pulses provides novel femtosecond snapshots of their structure and dynamics. This technique, which is the optical analogue of multidimensional NMR spectroscopy, gives correlation plots of motions during controlled time intervals between pulses that are applied to study protein folding, chirality, hydrogen‐bonding, phospholipid membranes, and chemical exchange.
7.
振动圆二色谱: 一种确定手性分子绝对构型的新方法 总被引:2,自引:0,他引:2
手性分子绝对构型的确定是一个极其重要且长期存在的问题. 振动圆二色谱是在红外波长区域测定分子圆二色性的一种新方法, 极大地扩展了圆二色谱的应用范围. 振动圆二色谱法通过构象搜索、量子化学计算等手段准确预测手性分子的振动圆二色谱图, 进而与实测谱图进行比较确定其绝对构型. 该方法已经得到了越来越广泛的应用, 必将成为一种有效测定手性分子绝对构型的常规方法. 相似文献
8.
Aram Hong Chang Min Choi Han Jun Eun Changseop Jeong Prof. Jiyoung Heo Prof. Nam Joon Kim 《Angewandte Chemie (International ed. in English)》2014,53(30):7805-7808
The CD spectroscopy of a chiral compound in solution yields an average CD value derived from all of the conformations of a chiral molecule. By contrast, CD spectroscopy of cold chiral molecules in the gas phase distinguishes specific conformers of a chiral molecule, but the weak CD effect has limited the practical application of this technique. Reported herein is the first resonant two‐photon ionization CD spectra of ephedrines in a supersonic jet using circularly polarized laser pulses, which were generated by synchronizing the oscillation of the photoelastic modulator with the laser firing. The spectra exhibited well‐resolved CD bands which were specific for the conformations and vibrational modes of each enantiomer. The CD signs and magnitudes of the jet‐cooled chiral molecules were very sensitive to their conformations and thus offered crucial information for determining the three‐dimensional structures of chiral species, as conducted in combination with quantum chemical calculations. 相似文献
9.
Peiyang Zhu Prof. Dr. Guochun Yang Mohammad Reza Poopari Zhi Bie Prof. Dr. Yunjie Xu 《Chemphyschem》2012,13(5):1272-1281
Vibrational circular dichroism (VCD) spectroscopy is utilized to reveal the detailed conformational distributions of the dominant serine species in aqueous solutions under three representative pH conditions of 1.0, 5.7, and 13.0, together with vibrational absorption (VA) spectroscopy, density functional theory (DFT), and molecular dynamics simulation. The experimental VA and VCD spectra of serine in H2O and D2O in the fingerprint region under three pH values are obtained. DFT calculations at the B3LYP/6‐311++G(d,p) level are carried out for the protonated, zwitterionic, and deprotonated serine species. The lowest‐energy conformers of all three species are identified and their corresponding VA and VCD spectra simulated. A comparison between the gas‐phase simulations and the experimental VA and VCD spectra suggests that one or two of the most stable conformers of each species contribute predominantly to the observed data, although some discrepancies are noted. To account for the solvent effects, both the polarizable continuum model and the explicit solvation model are considered. Hydrogen‐bonded protonated, zwitterionic, and deprotonated serine–(water)6 clusters are constructed based on radial distribution function analyses and molecular dynamics snapshots. Geometry optimization and VA and VCD simulations are performed for these clusters at the B3LYP/6‐311++G(d,p) level. Inclusion of the explicit water molecules is found to improve the agreement between theory and experiment noticeably in all three cases, thus enabling conclusive conformational distribution analyses of serine in aqueous solutions directly. 相似文献
10.
Elucidating the Structure of Chiral Molecules by using Amplified Vibrational Circular Dichroism: From Theory to Experimental Realization 下载免费PDF全文
Dr. Sérgio R. Domingos Prof. Dr. František Hartl Prof. Dr. Wybren Jan Buma Prof. Dr. Sander Woutersen 《Chemphyschem》2015,16(16):3363-3373
Recent experimental observations of enhanced vibrational circular dichroism (VCD) in molecular systems with low‐lying electronically excited states suggest interesting new applications of VCD spectroscopy. The theory describing VCD enhancement through vibronic coupling schemes was derived by Nafie in 1983, but only recently experimental evidence of VCD amplification has demonstrated the extent to which this effect can be exploited as a structure elucidation tool to probe local structure. In this Concept paper, we give an overview of the physics behind vibrational circular dichroism, in particular the equations governing the VCD amplification effect, and review the latest experimental developments with a prospective view on the application of amplified VCD to locally probe biomolecular structure. 相似文献
11.
12.
Polymorphism of Amyloid Fibrils Induced by Catalytic Seeding: A Vibrational Circular Dichroism Study
Amyloidal protein fibrils occur in many biological events, but their formation and structural variability are understood rather poorly. We systematically explore fibril polymorphism for polyglutamic acid (PGA), insulin and hen egg white lysozyme. The fibrils were grown in the presence of “seeds”, that is fibrils of the same or different protein. The seeds in concentrations higher than about 5 % of the total protein amount fully determined the structure of the final fibrils. Fibril structure was monitored by vibrational circular dichroism (VCD) spectroscopy and other techniques. The VCD shapes significantly differ for different fibril samples. Infrared (IR) and VCD spectra of PGA were also simulated using density functional theory (DFT) and a periodic model. The simulation provides excellent basis for data interpretation and reveals that the spectral shapes and signs depend both on fibril length and twist. The understanding of fibril formation and interactions may facilitate medical treatment of protein misfolding diseases in the future. 相似文献
13.
Dr. Valentin P. Nicu Dr. Sérgio R. Domingos M. Sc. Benjamin H. Strudwick Prof. Dr. Albert M. Brouwer Prof. Dr. Wybren J. Buma 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(2):704-715
A detailed analysis of the computed structure, energies, vibrational absorption (VA) and circular dichroism (VCD) spectra of 30 low‐energy conformers of dehydroquinidine reveals the existence of families of pseudo‐conformers, the structures of which differ mostly in the orientation of a single O?H bond. The pseudo‐conformers in a family are separated by very small energy barriers (i.e., 1.0 kcal mol?1 or smaller) and have very different VCD spectra. First, we demonstrate the unreliable character of the Boltzmann factors predicted with DFT. Then, we show that the large differences observed between the VCD spectra of the pseudo‐conformers in a family are caused by large‐amplitude motions involving the O?H bond, which trigger the appearance/disappearance of strong VCD exciton‐coupling bands in the fingerprint region. This interplay between exciton coupling and large‐amplitude‐motion phenomena demonstrates that when dealing with flexible molecules with polar bonds, vibrational averaging of VCD spectra should not be neglected. In this regard, the dehydroquinidine molecule considered here is expected to be a typical example and not the exception to the rule. 相似文献
14.
15.
A series of multidentate nitrogen donor ligands have been synthesized and characterized and their conformational distributions in solution have been investigated. Vibrational absorption (VA) and vibrational circular dichroism (VCD) spectroscopy, complemented with DFT calculations, have been used to probe the conformations of these important ligands in solution directly. These three ligands demonstrate very different conformational flexibility; the pyridine subunits and amine groups may adopt a number of different conformations. Experimental VA and VCD data measured in CDCl3 have been compared to the theoretical spectra of all possible most stable conformers. Solvent effects have been taken into account by using the implicit polarizable continuum model and explicit solvation model. The explicit hydrogen‐bonding solvation model is important for explaining the VCD sign‐reverse phenomenon in the amide I region. Good agreement has been achieved between experimental and predicted spectra for all three ligands; thus allowing detailed examination of the related conformational structures and distributions in solution. 相似文献
16.
H. Georg Breunig Dr. Gunter Urbasch Dr. Philipp Horsch Jens Cordes Ulrich Koert Prof. Dr. Karl‐Michael Weitzel Prof. Dr. 《Chemphyschem》2009,10(8):1199-1202
Telling the difference quickly: Femtosecond laser pulses are not only suitable to distinguish structural isomers. They also provide access to the distinction of enantiomers by combination of circular dichroism and mass spectrometry (see picture).
17.
与电子能级跃迁相关的电子圆二色(ECD)光谱因其研究对象宽泛,与涉及振动能级的振动圆二色(VCD)光谱互补,已成为应用于手性立体化学研究的集成手性光谱的主流表征手段。本文概述了确定手性金属配合物绝对构型的三种主要方法,详细介绍了ECD光谱法在确定手性金属配合物绝对构型中的应用,其中着重强调了激子手性方法,并对集成手性光谱学未来的发展趋势做出了展望。 相似文献
18.
Cover Picture: Elucidating the Structure of Chiral Molecules by using Amplified Vibrational Circular Dichroism: From Theory to Experimental Realization (ChemPhysChem 16/2015) 下载免费PDF全文
Dr. Sérgio R. Domingos Prof. Dr. František Hartl Prof. Dr. Wybren Jan Buma Prof. Dr. Sander Woutersen 《Chemphyschem》2015,16(16):3343-3343
19.
20.
Dr. Stefano Turchini Dr. Daniele Catone Dr. Nicola Zema Dr. Giorgio Contini Dr. Tommaso Prosperi Prof. Piero Decleva Prof. Mauro Stener Dr. Flaminia Rondino Dr. Susanna Piccirillo Dr. Kevin C. Prince Prof. Maurizio Speranza 《Chemphyschem》2013,14(8):1723-1732
A study of (R)‐3‐methylcyclopentanone [(R)‐3‐MCP] by photoelectron spectroscopy and photoelectron circular dichroism (PECD) is presented. The synchrotron radiation gas‐phase photoelectron spectra of (R)‐3‐MCP were measured and are discussed on the basis of different theoretical methodologies. The experimental dichroism of (R)‐3‐MCP for selected deconvoluted valence states and for the carbonyl carbon 1s core state are reported and reproduced well by calculated dispersions generated by considering the contributions of two different conformers. The theoretical dichroic parameters are calculated by employing a multicentre basis set of B‐spline functions and a Kohn–Sham Hamiltonian. Temperature‐dependent PECD studies of the HOMO state and the carbonyl carbon 1s core level allowed the separation of the contributions of each conformer by photoelectron dichroism. This new approach clearly shows how the PECD methodology is sensitive to conformational and structural changes of unoriented (R)‐3‐MCP in the gas phase, opening up new perspectives in the characterisation of chiral molecular systems. 相似文献