首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Decarboxylative C?H functionalization reactions are highly attractive methods for forging carbon–carbon bonds considering their inherent step‐ and atom‐economical features and the pervasiveness of carboxylic acids and C?H bonds. An ideal approach to achieve these dehydrogenative transformations is through hydrogen evolution without using any chemical oxidants. However, effective couplings by decarboxylative carbon–carbon bond formation with proton reduction remain an unsolved challenge. Herein, we report an electrophotocatalytic approach that merges organic electrochemistry with photocatalysis to achieve the efficient direct decarboxylative C?H alkylation and carbamoylation of heteroaromatic compounds through hydrogen evolution. This electrophotocatalytic method, which combines the high efficiency and selectivity of photocatalysis in promoting decarboxylation with the superiority of electrochemistry in effecting proton reduction, enables the efficient coupling of a wide range of heteroaromatic bases with a variety of carboxylic acids and oxamic acids. Advantageously, this method is scalable to decagram amounts, and applicable to the late‐stage functionalization of drug molecules.  相似文献   

2.
Decarboxylative C−H functionalization reactions are highly attractive methods for forging carbon–carbon bonds considering their inherent step- and atom-economical features and the pervasiveness of carboxylic acids and C−H bonds. An ideal approach to achieve these dehydrogenative transformations is through hydrogen evolution without using any chemical oxidants. However, effective couplings by decarboxylative carbon–carbon bond formation with proton reduction remain an unsolved challenge. Herein, we report an electrophotocatalytic approach that merges organic electrochemistry with photocatalysis to achieve the efficient direct decarboxylative C−H alkylation and carbamoylation of heteroaromatic compounds through hydrogen evolution. This electrophotocatalytic method, which combines the high efficiency and selectivity of photocatalysis in promoting decarboxylation with the superiority of electrochemistry in effecting proton reduction, enables the efficient coupling of a wide range of heteroaromatic bases with a variety of carboxylic acids and oxamic acids. Advantageously, this method is scalable to decagram amounts, and applicable to the late-stage functionalization of drug molecules.  相似文献   

3.
有机硅化合物在有机合成、材料化学和药物化学中都有广泛应用.因此,其自身的合成方法学在近年来广受关注.从原子经济性的角度出发,选择性的C(sp3)–H键切断是一种高效经济的合成策略.硅烷基单元在有机化合物中广泛存在,通过对硅烷基中的C(sp3)–H键直接官能团化来合成新的有机硅化合物是一种十分有前景的合成方法.近年来,过渡金属催化的C(sp3)–H键活化成为有机合成研究的热点领域.与肟基、唑啉、吡啶基、酰胺基、羧酸酯基等官能团或是与氧、氮或硫等杂原子相连的C(sp3)–H键的活化研究已有许多报道,但是与硅相邻的C(sp3)–H键活化研究报道很少.本文综述了近年来过渡金属催化的硅烷基C(sp3)–H键切断的研究进展.  相似文献   

4.
The formation of carbon–carbon bonds through the functionalization of aromatic carbon–nitrogen bonds is a highly attractive synthetic strategy in the synthesis of aromatic molecules. In this paper, we report a novel aromatic carbon–nitrogen bond functionalization reaction by using a simple dearomatization strategy. Through this process para‐substituted anilines serve as a potential aryl source in the construction of a range of functionalized aromatic molecules, such as quaternary carbon centers, α‐keto esters, and aldehydes.  相似文献   

5.
The direct functionalization of C? H bonds in organic compounds has recently emerged as a powerful and ideal method for the formation of carbon–carbon and carbon–heteroatom bonds. This Review provides an overview of C? H bond functionalization strategies for the rapid synthesis of biologically active compounds such as natural products and pharmaceutical targets.  相似文献   

6.
The N‐centered radical directed remote C?H bond functionalization via hydrogen‐atom‐transfer at distant sites has developed as an enormous potential tool for the organic synthetic chemists. Unactivated and remote secondary and tertiary, as well as selected primary C?H bonds, can be utilized for functionalization by following these methodologies. The synthesis of the heterocyclic scaffolds provides them extra attention for the modern days′ developments in this field of unactivated remote C?H bonds functionalizations.  相似文献   

7.
The activation of carbon–fluorine (C?F) bonds is an important topic in synthetic organic chemistry. Metal‐mediated and ‐catalyzed elimination of β‐ or α‐fluorine proceeds under milder conditions than oxidative addition to C?F bonds. The β‐ or α‐fluorine elimination is initiated from organometallic intermediates having fluorine substituents on carbon atoms β or α to metal centers, respectively. Transformations through these elimination processes (C?F bond cleavage), which are typically preceded by carbon–carbon (or carbon–heteroatom) bond formation, have been increasingly developed in the past five years as C?F bond activation methods. In this Minireview, we summarize the applications of transition‐metal‐mediated and ‐catalyzed fluorine elimination to synthetic organic chemistry from a historical perspective with early studies and from a systematic perspective with recent studies.  相似文献   

8.
An overview of recent progress in the Fujiwara–Moritani reaction, which is the palladium‐catalyzed oxidative coupling of arenes with olefins to afford alkenyl arenes, is described. It is emphasized that regioselectivity on aryl ortho‐ or meta‐C?H activation could be controlled very well in the presence of Pd, Rh, or Ru catalysts with the assistance of various chelation groups on aromatic rings in this coupling reaction. Catalytic alkenylation of aryl C?H bonds from simple arenes is also discussed, especially from electron‐deficient arenes. These advanced protocols would not only make the Fujiwara–Moritani reaction more useful and applicable in organic synthesis but also light the way for the further development of the functionalization of normal C?H bonds.  相似文献   

9.
Measurements of one‐bond carbon–carbon coupling constants, 1J(C, C), were performed for two series of compounds, alkyl‐substituted cyclopropenes and cyclopropanes. The experimental data were complemented by a set of DFT‐calculated J couplings for the parent cyclopropene ( 1 ), its methyl and silyl derivatives and, additionally, for 1‐methylcyclobutene ( 3 ), 1‐methylcyclopentene ( 4 ) and 1‐methylcyclohexene ( 5 ) and good agreement was observed between the experimental and the calculated data; all the trends are perfectly maintained, including a dramatic decrease in the couplings across endocyclic single bonds in cyclopropene and its derivatives, and a significant decrease in the corresponding couplings in cyclobutene. Using the data obtained, the s characters of the carbon hybrid orbitals involved in the formation of the cyclopropene were calculated. The results clearly show that the ring closure and the related strain exerted upon the cyclopropene molecule only slightly disturb the electron structure of the double bond. The s character of the corresponding carbon orbital is 0.314 in cyclopropene vs the theoretical value of 0.333 in ethene. This is at variance with the endo‐ and exocyclic single bonds, where the s characters of the orbitals forming the endocyclic single bonds are much smaller than those of the bonds in the open‐chain compounds, i.e. 0.229 (C‐1 and/or C‐2) and 0.166 (C‐3). The s values calculated for the exocyclic CH bonds are 0.334 for C‐3 and 0.456 for C‐1 and/or C‐2. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Achieving site selectivity in carbon–hydrogen (C?H) functionalization reactions is a formidable challenge in organic chemistry. Herein, we report a novel approach to activating remote C?H bonds at the C5 position of 8‐aminoquinoline through copper‐catalyzed sulfonylation under mild conditions. Our strategy shows high conversion efficiency, a broad substrate scope, and good toleration with different functional groups. Furthermore, our mechanistic investigations suggest that a single‐electron‐transfer process plays a vital role in generating sulfonyl radicals and subsequently initiating C?S cross‐coupling. Importantly, our copper‐catalyzed remote functionalization protocol can be expanded for the construction of a variety of chemical bonds, including C?O, C?Br, C?N, C?C, and C?I. These findings provide a fundamental insight into the activation of remote C?H bonds, while offering new possibilities for rational design of drug molecules and optoelectronic materials requiring specific modification of functional groups.  相似文献   

11.
In contrast to traditional multistep synthesis, modern organic synthesis extensively depends on the direct functionalization of unactivated C?H bonds for the construction of various C?C and C‐heteroatom bonds in atom‐ and step‐economic manner. Common aliphatic substrates, e. g. carboxylic acids and their synthetic equivalents, are regiospecifically functionalized based on either a directed approach, in which the polar directing group assists to functionalize a specific C?H bond positioned at β‐ and γ‐carbon centers, or a non‐directed approach typically leading to α‐functionalization. While numerous reviews on catalytic C?H functionalization have appeared, a concise review on the direct C(sp3)?H heterofunctionalization of carboxylic acid synthons with Group 16 elements has been awaited. The recent advances on the direct oxy‐functionalization and chalcogenation of aliphatic carboxylic acid synthons enabled by transition metal, organo‐ and photocatalysts are described herein.  相似文献   

12.
《Tetrahedron》2019,75(31):4059-4070
The functionalization of primary C–H bonds has been a longstanding challenge in catalysis. Our group has developed a series of silylations of primary C–H bonds that occur with site selectivity and diastereoselectivity resulting from an approach to run the reactions as intramolecular processes. These reactions have become practical by using an alcohol or amine as a docking site for a hydrosilyl group, thereby leading to intramolecular silylations of C–H bonds at positions dictated by the presence common functional groups in the reactants. Oxidation of the C–Si bond leads to the introduction of alcohol functionality at the position of the primary C–H bond of the reactant. The development, scope, and applications of these functionalization reactions is described in this minireview.  相似文献   

13.
《中国化学》2018,36(8):692-697
Cross‐coupling reactions have developed widely and provided a powerful means to synthesize a variety of compounds in each chemical field. The compounds which have C—H bonds are widespread in fossil fuels, chemical raw materials, biologically active molecules, etc. Using these readily‐ available substances as substrates is high atom‐ and step‐economy for cross‐coupling reactions. Over the past decades, our research group focused on finding and developing new strategies for C—H functionalization. Compared with classical C—H activation methods, for example, C—H bonds are deprotonated by strong base or converted into C—M bonds, oxidation‐induced C—H functionalization would be another pathway for C—H bond activation. This perspective shows a brief introduction of our recent works in this oxidation‐induced C—H functionalization. We categorized this approach of these C—H bond activations by the key intermediates, radical cations, radicals and cations.  相似文献   

14.
C–H键活化及其官能团化一直被认为是合成化学的圣杯,光/电氧化诱导C–H键官能团化反应为追求更为绿色、原子经济性、步骤经济性更高的现代合成化学提供了新思路.我们借助可见光或电化学氧化诱导策略实现了直接C–H键官能团化,即底物无需预官能团化,无需外加氧化剂,可直接实现碳–碳以及碳–杂键的构建.通过光/电化学氧化诱导策略使得反应在更为温和的条件下进行,能够兼容更多官能团,并且为合成化学提供一条新的途径.近些年,该策略已经应用于不同化学环境C–H官能团化构建多种化学键.本文结合该领域的代表性工作,重点介绍本课题组近些年在光/电氧化诱导C–H键官能团化反应上的研究进展,并对这一领域的前景进行了展望.  相似文献   

15.
Intramolecular dehydrogenative cyclization of aliphatic amides was achieved on unactivated sp3 carbon atoms by a nickel‐catalyzed C?H bond functionalization process with the assistance of a bidentate directing group. The reaction favors the C?H bonds of β‐methyl groups over the γ‐methyl or β‐methylene groups. Additionally, a predominant preference for the β‐methyl C?H bonds over the aromatic sp2 C?H bonds was observed. Moreover, this process also allows for the effective functionalization of benzylic secondary sp3 C?H bonds.  相似文献   

16.
Improving the reactivity and selectivity is a long pursuing goal in C—H functionalization reactions. In line with this goal, a well‐designed bidentate 2‐(pyridine‐yl)isopropyl amine (PIP amine) directing group was developed by our group to achieve the activation of unbiased methylene C(sp3)–H activation, which also found its broad applications in C—H activation reactions catalyzed by base metals, such as Cu, Ni, Co and Fe, to form various C—C and C—X bonds. Moreover, PIP amine has also been applied in the strategic step toward the total synthesis of aeruginosin marine natural products. Its highly tunable structure has triggered the design of a series of chiral auxiliaries for diastereoselective C—H activation. More recently, Pd(II)‐catalyzed enantioselective functionalization of unbiased methylene C(sp3)–H bonds enabled by the cooperative effects between PIP amine and chiral ligands with axially chiral binaphthyl scaffold has also been realized. In this account, we briefly summaries the journey of developing PIP amine for C—H activation, from controlling the reactivity and regioselectivity to stereoselectivity.  相似文献   

17.
A unique metal‐free aerobic oxidation of primary amines via visible light photocatalytic double carbon–carbon bonds cleavage and multi carbon–hydrogen bonds oxidation was observed. Aerobic oxidation of primary amines could be controlled to afford acids by using dioxane with 18 W CFL, and lactones by using DMF with 8 W green LEDs, respectively. A plausible mechanism was proposed based on control experiments. This observation showed direct evidences for the fragmentation in the aerobic oxidation of aliphatic primary amines.  相似文献   

18.
Methods for functionalizing carbon–hydrogen bonds are featured in a new synthesis of the tricyclic core architecture that characterizes the indoxamycin family of secondary metabolites. A unique collaboration between three laboratories has engendered a design for synthesis featuring two sequential C?H functionalization reactions, namely a diastereoselective dirhodium carbene insertion followed by an ester‐directed oxidative Heck cyclization, to rapidly assemble the congested tricyclic core of the indoxamycins. This project exemplifies how multi‐laboratory collaborations can foster conceptually novel approaches to challenging problems in chemical synthesis.  相似文献   

19.
Spin–spin carbon–carbon coupling constants across one, two and three bonds, J(CC), have been measured for a series of aryl‐substituted Z‐s‐Z‐s‐E enaminoketones and their thio analogues. As a result, a large set, altogether 178, of J(CC)s has been obtained. It consists of 82 couplings across one bond, 31 couplings across two bonds and 65 couplings across three bonds. Independently, the DFT calculations at the B3PW91/6‐311++G(d,p)//B3PW91/6‐311++G(d,p) level yielded a set of theoretical J(CC) values. A comparison of these two sets of data gave an excellent linear correlation with parameters a and b close to ideal; a = 0.9978 which is not far from unity and b = 0.22 Hz which is close to zero. The 1J(CC) couplings determined for the crucial fragment of the molecules, i.e. ? C?C? C?O (or ? C?C? C?S), are: 1J(C?C) ≈ 68 Hz (67 Hz) and 1J(C? C) = 60.5 Hz (60.0 Hz). The corresponding couplings found for the Z‐s‐Z‐s‐E isomer of the parent enaminoketone, 4‐methylamino‐but‐3‐en‐2‐one are 64.1 and 59.3 Hz, respectively. The most sensitive towards substitution of the oxygen atom by sulfur are two‐bond couplings between the α‐vinylic and aromatic Cipso carbon atoms, which attain 12 Hz in the enaminoketone derivatives and decrease to 5 Hz in their thio analogues. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Boiling of the title compounds in ethereal solvents or cycloalkanes in the presence of a radical initiator leads to radical C(sp3)? H functionalization, by which a sulfur atom is introduced into the ethereal solvents at the oxygenated carbon atom or into the cycloalkanes. Both acyclic and cyclic ethers, such as [18]crown‐6 and [D8]THF, undergo the sulfur transfer. The reaction is useful for the synthesis of monothioacetals, thiols, and sulfides from simple starting materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号