首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5‐Amino‐thieno[3,2‐c]pyrazole derivative 2 was prepared by Gewald reaction in a one‐pot procedure. The amino group of compound 2 like primary aromatic amine formed the diazonium salt when treated with NaNO2/HCl, followed by coupling with different nucleophiles to yield the azo coupling products 3a – d . The reactivity of 5‐amino‐thienopyrazole 2 has been investigated towards different electrophilic reagents such as aromatic aldehydes, alkyl halide, acid chloride, acid anhydride, phenyl isothiocyanate, carbon disulfide, ethyl glycinate, and thioacetamide, which afforded the reaction products 4 – 14 , respectively.  相似文献   

2.
A bimolecular rate constant,kDHO, of (29 ± 9) × 10?12 cm3 molecule?1 s?1 was measured using the relative rate technique for the reaction of the hydroxyl radical (OH) with 3,5‐dimethyl‐1‐hexyn‐3‐ol (DHO, HC?CC(OH)(CH3)CH2CH(CH3)2) at (297 ± 3) K and 1 atm total pressure. To more clearly define DHO's indoor environment degradation mechanism, the products of the DHO + OH reaction were also investigated. The positively identified DHO/OH reaction products were acetone ((CH3)2C?O), 3‐butyne‐2‐one (3B2O, HC?CC(?O)(CH3)), 2‐methyl‐propanal (2MP, H(O?)CCH(CH3)2), 4‐methyl‐2‐pentanone (MIBK, CH3C(?O)CH2CH(CH3)2), ethanedial (GLY, HC(?O)C(?O)H), 2‐oxopropanal (MGLY, CH3C(?O)C(?O)H), and 2,3‐butanedione (23BD, CH3C(?O)C(?O)CH3). The yields of 3B2O and MIBK from the DHO/OH reaction were (8.4 ± 0.3) and (26 ± 2)%, respectively. The use of derivatizing agents O‐(2,3,4,5,6‐pentalfluorobenzyl)hydroxylamine (PFBHA) and N,O‐bis(trimethylsilyl)trifluoroacetamide (BSTFA) clearly indicated that several other reaction products were formed. The elucidation of these other reaction products was facilitated by mass spectrometry of the derivatized reaction products coupled with plausible DHO/OH reaction mechanisms based on previously published volatile organic compound/OH gas‐phase reaction mechanisms. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 534–544, 2004  相似文献   

3.
4,6‐Substituted‐2‐alkylthio‐6H‐1,3‐thiazines were synthesized by the reaction of S‐alkyl dithiocarbamates and α, β‐unsaturated ketones in the presence of ZrCl4/TMSCl. The procedure is simple and efficient and gives good to high yields of products.  相似文献   

4.
An eco‐friendly method has been developed for the synthesis of 2‐amino‐4‐(9H‐carbazole‐3‐yl)thiophene‐3‐carbonitriles from preliminary carbazole ( 1 ) through an intermediate of 2‐(1‐(9H‐carbazole‐3‐yl)ethylidene)malononitriles using the Knoevenagel condensation followed by the Gewald reaction. On the other hand, the target compounds could also be prepared in a one‐pot three‐component manner by treating equimolar quantities of 1‐(9H‐carbazole‐3‐yl)ethanone ( 3 ), malononitrile, and elemental sulfur. The merits of this preparation are mild reaction conditions. The Gewald reaction is executed with inorganic base NaHCO3 (H2O) in tetrahydrofuran, easy work‐up procedure with good yields.  相似文献   

5.
The reaction of S‐methylisothiosemicarbazide hydroiodide (=S‐methyl hydrazinecarboximidothioate hydroiodide; 1 ), prepared from thiosemicarbazide by treatment with MeI in EtOH, and aryl isoselenocyanates 5 in CH2Cl2 affords 3H‐1,2,4‐triazole‐3‐selone derivatives 7 in good yield (Scheme 2, Table 1). During attempted crystallization, these products undergo an oxidative dimerization to give the corresponding bis(4H‐1,2,4‐triazol‐3‐yl) diselenides 11 (Scheme 3). The structure of 11a was established by X‐ray crystallography.  相似文献   

6.
An efficient method for the synthesis of N‐alkylated 2‐(4‐substituted‐1H‐1,2,3‐triazol‐1‐yl)‐1H‐indole‐3‐carbaldehyde has been developed starting from oxindole and indole using Huisgen's 1,3‐dipolar cycloaddition reaction of organic azides to alkynes. The effect of catalysts and solvent on these reactions has been investigated. Among all these conditions, while using CuSO4·5H2O, DMF was found to be the best system for this reaction. It could also be prepared in a one‐pot three‐component manner by treating equimolar quantities of halides, azides, and alkynes. The Huisgen's 1,3‐dipolar cycloaddition reaction was performed using CuSO4·5H2O in DMF with easy work‐up procedure.  相似文献   

7.
An exceedingly and highly efficient procedure has been described for the synthesis of substituted N‐3‐diaryl‐1,8‐naphthyridin‐2‐amines by the reaction of 2‐chloro‐3‐aryl‐1,8‐naphthyridines with various anilines in the presence of N‐methyl‐2‐pyrrolidone and K2CO3 under thermal green solvent‐free conditions. The significant features of this green reaction include very good yields in purity, simple experimental, short reaction time, easy workability, and avoidance of toxic solvents. All synthesized compounds have been evaluated for their antibacterial activity.  相似文献   

8.
An efficient two‐step method for the preparation of 3‐(2‐hydroxyethoxy)‐ or 3‐(3‐hydroxypropoxy)isobenzofuran‐1(3H)‐ones 3 has been developed. Thus, the reaction of 1‐(1,3‐dioxol‐2‐yl)‐ or 1‐(1,3‐dioxan‐2‐yl)‐2‐lithiobenzenes, generated in situ by the treatment of 1‐bromo‐2‐(1,3‐dioxol‐2‐yl)‐ or 1‐bromo‐2‐(1,3‐dioxan‐2‐yl)benzenes 1 with BuLi in THF at ?78°, with (Boc)2O afforded tert‐butyl 2‐(1,3‐dioxol‐2‐yl)‐ or 2‐(1,3‐dioxan‐2‐yl)benzoates 2 , which can subsequently undergo facile lactonization on treatment with CF3COOH (TFA) in CH2Cl2 at 0° to give the desired products in reasonable yields.  相似文献   

9.
A convenient three‐step procedure for the synthesis of three types of 3‐aryl‐2‐sulfanylthienopyridines 4, 8 , and 12 has been developed. The first step of the synthesis of thieno[2,3‐b]pyridine derivatives 4 is the replacement of the halo with a (sulfanylmethyl)sulfanyl group in aryl(2‐halopyridin‐3‐yl)methanones 1 by successive treatment with Na2S?9 H2O and chloromethyl sulfides to give aryl{2‐[(sulfanylmethyl)sulfanyl]pyridin‐3‐yl}methanones 2 . In the second step, these were treated with LDA (LiNiPr2) to give 3‐aryl‐2,3‐dihydro‐2‐sulfanylthieno[2,3‐b]pyridin‐3‐ols 3 , which were dehydrated in the last step with SOCl2 in the presence of pyridine to give the desired products. Similarly, thieno[2,3‐c]pyridine and thieno[3,2‐c]pyridine derivatives, 8 and 12 , respectively, can be prepared from aryl(3‐chloropyridin‐4‐yl)methanones 5 and aryl(4‐chloropyridin‐3‐yl)methanones 9 , respectively.  相似文献   

10.
A simple and eco‐friendly method for the preparation of 1,5‐diaryl‐3‐(arylamino)‐1H‐pyrrol‐2(5H)‐ones via the cyclo‐condensation reaction of aldehydes, amines and ethyl pyruvate in the presence of silica supported ferric chloride (SiO2‐FeCl3) as reusable heterogeneous catalyst is described. The present methodology offers several advantages such as excellent yields, simple procedure and short reaction times.  相似文献   

11.
A safe, efficient, and improved procedure for the regioselective synthesis of 1‐(2‐hydroxyethyl)‐1H‐1,2,3‐triazole derivatives under ambient conditions is described. Terminal alkynes reacted with oxiranes and NaN3 in the presence of a copper(I) catalyst, which is prepared by in situ reduction of the copper(II) complex 4 with ascorbic acid, in H2O. The regioselective reactions exclusively gave the corresponding 1,4‐disubstituted 1H‐1,2,3‐triazoles in good to excellent yields. This procedure avoids the handling of organic azides as they are generated in situ, making this already powerful click process even more user‐friendly and safe. The remarkable features of this protocol are high yields, very short reaction times, a cleaner reaction profile in an environmentally benign solvent (H2O), its straightforwardness, and the use of nontoxic catalysts. Furthermore, the catalyst could be recovered and recycled by simple filtration of the reaction mixture and reused for ten consecutive trials without significant loss of catalytic activity. No metal‐complex leaching was observed after the consecutive catalytic reactions.  相似文献   

12.
Oxidation of E,E‐bis(3‐bromo‐1‐chloro‐1‐propen‐2‐yl) sulfide and selenide with hydrogen peroxide in chloroform/acetic acid or acetic acid affords previously unknown E,E‐bis(3‐bromo‐1‐chloro‐1‐propen‐2‐yl) sulfoxide, selenoxide, and sulfone. The reaction of E,E‐bis(3‐bromo‐1‐chloro‐1‐propen‐2‐yl) sulfone with primary amines in ethanol in the presence of NaHCO3 or Na2CO3 is found to lead not only to heterocyclization but also to alcoholysis of the chloromethylidene groups in the intermediate bis(chloromethylidene) derivatives of thiomorpholine‐1,1‐dioxides to afford N‐organyl‐2(E),6(E)‐bis(ethoxymethylidene) thiomorpholine‐1,1‐dioxides as final products.  相似文献   

13.
Various arylboronic acids reacted with activated alkenes in the presence of [Ni(dppe)Br2], ZnCl2, and H2O in CH3CN at 80 °C to give the corresponding Mizoroki–Heck‐type addition products in good to excellent yields. Furthermore, 1 equivalent of the hydrogenation product of the activated alkene was also produced. By tuning the ligands of the nickel complexes and the reaction conditions, Michael‐type addition was achieved in a very selective manner. Thus, various p‐ and o‐substituted arylboronic acids or alkenylboronic acid reacted smoothly with activated alkenes in CH3CN at 80 °C for 12 h catalyzed by Ni(acac)2, P(o‐anisyl)3, and K2CO3 to give the corresponding Michael‐type addition products in excellent yields. However, for m‐substituted arylboronic acids, the yields of Michael‐type addition products are very low. The cause of this unusual meta‐substitution effect is not clear. By altering the solvent or phosphine ligand, the product yields for m‐substituted arylboronic acids were greatly improved. In contrast to previous results in the literature, the present catalytic reactions required water for Mizoroki–Heck‐type products and dry reaction conditions for Michael‐type addition products. Possible mechanistic pathways for both addition reactions are proposed.  相似文献   

14.
An efficient and convenient synthesis of a new series of 2‐{(6H‐indolo[2,3‐b]quinoxalin‐6‐yl)methyl}‐5‐aryl‐1,3,4‐oxadiazoles from readily available 1,2‐diaminobenzene and isatins under microwave irradiation conditions was disclosed. The 6‐{(5‐aryl‐1,3,4‐oxadiazol‐2‐yl)methyl}‐6H‐indolo[2,3‐b]quinoxalines were also prepared by the thermal cyclo‐condensation reaction of 2‐(6H‐indolo[2,3‐b]quinoxalin‐6‐yl)acetohydrazides with carboxylic acids in refluxing POCl3. The microwave‐assisted synthesis was rapid and resulted in higher yield of the products at lower operating temperature with reduced waste generation in comparison with the thermal reaction protocol.  相似文献   

15.
Treatment of 1‐aryl‐1‐allen‐6‐enes with [PPh3AuCl]/AgSbF6 (5 mol %) in CH2Cl2 at 25 °C led to intramolecular [3+2] cycloadditions, giving cis‐fused dihydrobenzo[a]fluorene products efficiently and selectively. The reactions proceeded with initial formation of trans/cis mixtures of 2‐alkyl‐1‐isopropyl‐2‐phenyl‐1,2‐dihydronaphthalene cations B, which were convertible into the desired cis‐fused cycloadducts through the combined action of a gold catalyst and a Brønsted acid. Theoretic calculation supports the participation of the trans‐B cation as reaction intermediate. Although HOTf showed similar activity towards several 1‐aryl‐1‐allen‐6‐enes, it lacks generality for this cycloaddition reaction.  相似文献   

16.
A novel and efficient method for the preparation of 1,3‐dihydro‐3‐oxo‐2‐benzofuran‐1‐carboxylates 4 under mild conditions has been developed. Thus, the reaction of [2‐(dimethoxymethyl)phenyl]lithiums, generated easily from 1‐bromo‐2‐(dimethoxymethyl)benzenes 1 , with α‐keto esters gives the corresponding 2‐[2‐(dimethoxymethyl)phenyl]‐2‐hydroxyalkanoates 2 . The TsOH‐catalyzed cyclization of these hydroxy acetals is followed by the oxidation of the resulting cyclic acetals 3 with PCC to give the desired products in satisfactory yields. The reaction of [2‐(dimethoxymethyl)‐4,5‐dimethoxyphenyl]lithium with (MeOC?O)2, followed by treatment with NaBH4 or organolithiums, affords 2‐[2‐(dimethoxymethyl)‐4,5‐dimethoxyphenyl]‐2‐hydroxyalkanoates 6 , which can similarly be transformed into the corresponding 1,3‐dihydro‐3‐oxo‐2‐benzofuran‐1‐carboxylates 7 in reasonable yields.  相似文献   

17.
The reduction of heptalene diester 1 with diisobutylaluminium hydride (DIBAH) in THF gave a mixture of heptalene‐1,2‐dimethanol 2a and its double‐bond‐shift (DBS) isomer 2b (Scheme 3). Both products can be isolated by column chromatography on silica gel. The subsequent chlorination of 2a or 2b with PCl5 in CH2Cl2 led to a mixture of 1,2‐bis(chloromethyl)heptalene 3a and its DBS isomer 3b . After a prolonged chromatographic separation, both products 3a and 3b were obtained in pure form. They crystallized smoothly from hexane/Et2O 7 : 1 at low temperature, and their structures were determined by X‐ray crystal‐structure analysis (Figs. 1 and 2). The nucleophilic exchange of the Cl substituents of 3a or 3b by diphenylphosphino groups was easily achieved with excess of (diphenylphospino)lithium (=lithium diphenylphosphanide) in THF at 0° (Scheme 4). However, the purification of 4a / 4b was very difficult since these bis‐phosphines decomposed on column chromatography on silica gel and were converted mostly by oxidation by air to bis(phosphine oxides) 5a and 5b . Both 5a and 5b were also obtained in pure form by reaction of 3a or 3b with (diphenylphosphinyl)lithium (=lithium oxidodiphenylphospanide) in THF, followed by column chromatography on silica gel with Et2O. Carboxaldehydes 7a and 7b were synthesized by a disproportionation reaction of the dimethanol mixture 2a / 2b with catalytic amounts of TsOH. The subsequent decarbonylation of both carboxaldehydes with tris(triphenylphosphine)rhodium(1+) chloride yielded heptalene 8 in a quantitative yield. The reaction of a thermal‐equilibrium mixture 3a / 3b with the borane adduct of (diphenylphosphino)lithium in THF at 0° gave 6a and 6b in yields of 5 and 15%, respectively (Scheme 4). However, heating 6a or 6b in the presence of 1,4‐diazabicyclo[2.2.2]octane (DABCO) in toluene, generated both bis‐phosphine 4a and its DBS isomer 4b which could not be separated. The attempt at a conversion of 3a or 3b into bis‐phosphines 4a or 4b by treatment with t‐BuLi and Ph2PCl also failed completely. Thus, we returned to investigate the antipodes of the dimethanols 2a, 2b , and of 8 that can be separated on an HPLC Chiralcel‐OD column. The CD spectra of optically pure (M)‐ and (P)‐configurated heptalenes 2a, 2b , and 8 were measured (Figs. 4, 5, and 9).  相似文献   

18.
The Gewald reactions of 5‐substituted‐1,3‐cyclohexanedione, malononitrile, and powdered sulfur were carried out to give the corresponding products 2‐amino‐5‐substituted‐7‐oxo‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐3‐carbonitrile derivatives 1 . The intermediate enamines 2 were prepared by reaction of compounds 1 and 5‐substituted‐1,3‐cyclohexanedione with hydrochloric acid as catalyst. The title compounds 11‐amino‐2,8‐substituted‐2,3,8,9‐tetrahydrobenzo[4,5]thieno[2,3‐b]quinolinone 3 were synthesized by cyclization of compounds 2 in the presence of K2CO3 and Cu2Cl2. The structures of all compounds were characterized by elemental analysis, IR, MS, and 1H‐NMR spectra.  相似文献   

19.
Three title compounds 4a—4c have been synthesized by the cyclodehydration of 1’-benzylidine-4’-(3β-substituted-5α-cholestane-6-yl)thiosemicarbazones 2a—2c with thioglycolic acid followed by the treatment with cold conc. H2SO4 in dioxane. The compounds 2a—2c were prepared by condensation of 3β-substituted-5α-cholestan- 6-one-thiosemicarbazones 1a—1c with benzaldehyde. These thiosemicarbazones 1a—1c were obtained by the reaction of corresponding 3β-substituted-5α-cholestan-6-ones with thiosemicarbazide in the presence of few drops of conc. HCl in methanol. The structures of the products have been established on the basis of their elemental, analytical and spectral data.  相似文献   

20.
The reaction of 1H‐imidazole‐4‐carbohydrazides 1 , which are conveniently accessible by treatment of the corresponding esters with NH2NH2?H2O, with isothiocyanates in refluxing EtOH led to thiosemicarbazides (=hydrazinecarbothioamides) 4 in high yields (Scheme 2). Whereas 4 in boiling aqueous NaOH yielded 2,4‐dihydro‐3H‐1,2,4‐triazole‐3‐thiones 5 , the reaction in concentrated H2SO4 at room temperature gave 1,3,4‐thiadiazol‐2‐amines 6 . Similarly, the reaction of 1 with butyl isocyanate led to semicarbazides 7 , which, under basic conditions, undergo cyclization to give 2,4‐dihydro‐3H‐1,2,4‐triazol‐3‐ones 8 (Scheme 3). Treatment of 1 with Ac2O yielded the diacylhydrazine derivatives 9 exclusively, and the alternative isomerization of 1 to imidazol‐2‐ones was not observed (Scheme 4). It is important to note that, in all these transformations, the imidazole N‐oxide residue is retained. Furthermore, it was shown that imidazole N‐oxides bearing a 1,2,4‐triazole‐3‐thione or 1,3,4‐thiadiazol‐2‐amine moiety undergo the S‐transfer reaction to give bis‐heterocyclic 1H‐imidazole‐2‐thiones 11 by treatment with 2,2,4,4‐tetramethylcyclobutane‐1,3‐dithione (Scheme 5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号