首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Developing highly active and durable electrocatalysts for the oxygen reduction reaction (ORR) is crucial to large-scale commercialization of fuel cells and metal-air batteries. Here we report a facile approach for the synthesis of nitrogen and oxygen dual-doped mesoporous layer-structured carbon electrocatalyst embedded with graphitic carbon coated cobalt nanoparticles by direct pyrolysis of a layer-structured metal-organic framework. The electrocatalyst prepared at 800℃ exhibits comparable ORR performance to Pt/C catalysts but possesses superior stability to Pt/C catalysts. This synthetic approach provides new prospects in developing sustainable carbon-based electrocatalysts for electrochemical energy conversion devices.  相似文献   

2.
Nonprecious metal catalysts for the oxygen reduction reaction are the ultimate materials and the foremost subject for low‐temperature fuel cells. A novel type of catalysts prepared by high‐pressure pyrolysis is reported. The catalyst is featured by hollow spherical morphologies consisting of uniform iron carbide (Fe3C) nanoparticles encased by graphitic layers, with little surface nitrogen or metallic functionalities. In acidic media the outer graphitic layers stabilize the carbide nanoparticles without depriving them of their catalytic activity towards the oxygen reduction reaction (ORR). As a result the catalyst is highly active and stable in both acid and alkaline electrolytes. The synthetic approach, the carbide‐based catalyst, the structure of the catalysts, and the proposed mechanism open new avenues for the development of ORR catalysts.  相似文献   

3.
During the last few decades organometallic methodologies have generated a number of highly effective electrocatalyst systems based on mono‐ and bimetallic nanosparticles having controlled size, composition and structure. In this microreview we summarize our results in fuel cell catalyst preparation applying triorganohydroborate chemistry, ‘reductive particle stabilization’ using organoaluminum compounds, and the controlled decomposition of organometallic complexes. The advantages of organometallic catalyst preparation pathways are exemplified with Ru? Pt nanoparticles@C as promising anode catalysts to be used in direct methanol oxidation fuel cells (DMFC) or in polymer electrolyte fuel cells (PEMFC) running with CO‐contaminated H2 as the feed. Recent findings with highly efficient PtCo3@C fuel cell catalysts applied for the oxygen reduction reaction (ORR) and with the effect of Se‐doping on Ru@C ORR catalysts clearly demonstrate the benefits of organometallic catalyst synthesis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A bottom‐up synthetic approach was developed for the preparation of mesoporous transition‐metal‐oxide/noble‐metal hybrid catalysts through ligand‐assisted co‐assembly of amphiphilic block‐copolymer micelles and polymer‐tethered noble‐metal nanoparticles (NPs). The synthetic approach offers a general and straightforward method to precisely tune the sizes and loadings of noble‐metal NPs in metal oxides. This system thus provides a solid platform to clearly understand the role of noble‐metal NPs in photochemical water splitting. The presence of trace amounts of metal NPs (≈0.1 wt %) can enhance the photocatalytic activity for water splitting up to a factor of four. The findings can conceivably be applied to other semiconductors/noble‐metal catalysts, which may stand out as a new methodology to build highly efficient solar energy conversion systems.  相似文献   

5.
Despite tremendous progress in developing doped carbocatalysts for the oxygen reduction reaction (ORR), the ORR activity of current metal‐free carbocatalysts is still inferior to that of conventional Pt/C catalysts, especially in acidic media and neutral solution. Moreover, it also remains a challenge to develop an effective and scalable method for the synthesis of metal‐free carbocatalysts. Herein, we have developed nitrogen and phosphorus dual‐doped hierarchical porous carbon foams (HP‐NPCs) as efficient metal‐free electrocatalysts for ORR. The HP‐NPCs were prepared for the first time by copyrolyzing nitrogen‐ and phosphorus‐containing precursors and poly(vinyl alcohol)/polystyrene (PVA/PS) hydrogel composites as in situ templates. Remarkably, the resulting HP‐NPCs possess controllable nitrogen and phosphorus content, high surface area, and a hierarchical interconnected macro‐/mesoporous structure. In studying the effects of the HP‐NPCs on the ORR, we found that the as‐prepared HP‐NPC materials exhibited not only excellent catalytic activity for ORR in basic, neutral, and acidic media, but also much better tolerance for methanol oxidation and much higher stability than the commercial, state‐of‐the‐art Pt/C catalysts. Because of all these outstanding features, it is expected that the HP‐NPC material will be a very suitable catalyst for next‐generation fuel cells and lithium–air batteries. In addition, the novel synthetic method described here might be extended to the preparation of many other kinds of hierarchical porous carbon materials or porous carbon that contains metal oxide for wide applications including energy storage, catalysis, and electrocatalysis.  相似文献   

6.
Tailoring the morphology and composition of platinum‐based electrocatalysts is of significant importance for the development of highly efficient direct methanol fuel cells. Herein, we report a dual‐templating method for the design of hollow PtPd nanorods with mesoporous shells (mPtPd HNRs). We found that F127 micelles favored the formation of mesoporous structures and that SiO2 nanorods served as a hard template for the creation of cavities. The well‐developed mesopores, hollow structures, and bimetallic composition of the mPtPd HNRs afforded a sufficient number of active sites to facilitate the electrochemical oxidation of methanol, thereby leading to enhanced activity and stability. This strategy allowed for the reliable preparation of mesoporous hollow platinum‐based electrocatalysts with desired compositions and morphologies for catalytic applications.  相似文献   

7.
Platinum nanoparticles with continuously tunable mesoporous structures were prepared by a simple, one‐step polymeric approach. By virtue of their large pore size, these structures have a high surface area that is accessible to reagents. In the synthetic method, variation of the solvent composition plays an essential role in the systematic control of pore size and particle shape. The mesoporous Pt catalyst exhibited superior electrocatalytic activity for the methanol oxidation reaction compared to commercially available Pt catalysts. This polymeric‐micelle approach provides an additional design concept for the creation of next generation of metallic catalysts.  相似文献   

8.
Although Au catalysts can be readily prepared on titania via the deposition-precipitation (DP) method, the direct application of the method similar to the preparation of silica-supported Au catalysts only results in diminished success. This paper reports a novel, efficient method to synthesize highly active Au catalysts supported on mesoporous silica (SBA-15) through a gold cationic complex precursor [Au(en)2]3+ (en = ethylenediamine) via a wet chemical process. The gold cationic precursor was immobilized on negatively charged surfaces of silica by a unique DP method that makes use of the deprotonation reaction of ethylenediamine ligands. The resulting mesoporous catalyst has been demonstrated to be highly active for CO oxidation at room temperature and even below 273 K, the activity of which is much superior to that of silica-supported Au catalysts previously prepared by various solution techniques. The pH value of the gold precursor solution plays a key role in determining the catalytic activity through the regulation of [Au(en)2]3+ deprotonation reaction and the surface interaction of silica with the gold precursor. This mesoporous gold silica catalyst has also been shown to be highly resistant to sintering because of the stabilization of Au nanoparticles inside mesopores.  相似文献   

9.
《Journal of Energy Chemistry》2017,26(6):1140-1146
A binder-free Ir-dispersed ordered mesoporous carbon(Ir-OMC) catalytic electrode has been prepared through a designed in-situ carbonization method, which involves coating resorcinol and formaldehyde mixtures with iridium precursors onto the three-dimensional nickel foam framework, followed by insitu calcination in N_2 atmosphere at 800 ℃ for 3 h. This electrode shows a large surface area, ordered mesoporous structure and homogeneous distribution of metal nanoparticles. It presents good activity and stability towards hydrogen evolution reaction, which is attributed to the efficient mass and electron transport from the intimate contact among Ir nanoparticles, ordered mesoporous carbon matrix and 3 D conductive substrate. We hope that this in-situ carbonization synthetic route can also be applied to design more high-performance catalysts for water splitting, fuel cells and other clean energy devices.  相似文献   

10.
Two highly ordered isonicotinamide (INA)‐functionalized mesoporous MCM‐41 materials supporting indium and thallium (MCM‐41‐INA‐In and MCM‐41‐INA‐Tl) have been developed using a covalent grafting method. A surface functionalization method has been applied to prepare Cl‐modified mesoporous MCM‐41 material. Condensation of this Cl‐functionalized MCM‐41 with INA leads to the formation of MCM‐41‐INA. The reaction of MCM‐41‐INA with In(NO3)3 or Tl(NO3)3 leads to the formation of MCM‐41‐INA‐In and MCM‐41‐INA‐Tl catalysts. The resulting materials were characterized using various techniques. These MCM‐41‐INA‐In and MCM‐41‐INA‐Tl catalysts show excellent catalytic performance in the selective oxidation of sulfides and thiols to their corresponding sulfoxides and disulfides. Finally, it is found that the anchored indium and thallium do not leach out from the surface of the mesoporous catalysts during reaction and the catalysts can be reused for seven repeat reaction runs without considerable loss of catalytic performance.  相似文献   

11.
Designing and constructing nano‐architectures with abundant reactive atoms exposed on the surface and widely open pore interiors is an effective strategy for highly efficient utilization of Pt‐based catalysts. Herein, we report a facile method to synthesize tri‐metallic PtPdIr mesoporous hollow nanospheres (PtPdIr MHNSs) by selective chemical removal of sacrificial metallic cores from pre‐constructed Pd@PtIr mesoporous nanospheres (Pd@PtIr MNSs). The unique nano‐architectures, with mesoporous shells interconnected into the interior hollow cavities and the synergistic electronic effect from tri‐metallic PtPdIr composition, enable the as‐synthesized PtPdIr MHNSs to be efficient bifunctional electrocatalysts for catalyzing both methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR).  相似文献   

12.
We review recent developments in the preparation of mesoporous metals and related metal‐based nanomaterials. Among the many types of mesoporous materials, mesoporous metals hold promise for a wide range of potential applications, such as in electronic devices, magnetic recording media, and metal catalysts, owing to their metallic frameworks. Mesoporous metals with highly ordered networks and narrow pore‐size distributions have traditionally been produced by using mesoporous silica as a hard template. This method involves the formation of an original template followed by deposition of metals within the mesopores and subsequent removal of the template. Another synthetic method is the direct‐template approach from lyotropic liquid crystals (LLCs) made of nonionic surfactants at high concentrations. Direct‐template synthesis creates a novel avenue for the production of mesoporous metals as well as related metal‐based nanomaterials. Many mesoporous metals have been prepared by the chemical or electrochemical reduction of metal salts dissolved in aqueous LLC domains. As a soft template, LLCs are more versatile and therefore more advantageous than hard templates. It is possible to produce various nanostructures (e.g., lamellar, 2D hexagonal (p6mm), and 3D cubic (Ia d)), nanoparticles, and nanotubes simply by controlling the composition of the reaction bath.  相似文献   

13.
Layer-structured FeOCl was used as a novel inorganic template and the Fe doping source for the facile synthesis of three-dimensional polypyrrole structures which can be converted into mesoporous Fe3C/Fe-N-doped carbon catalysts for efficient and robust oxygen reduction reaction.  相似文献   

14.
CO hydrogenation to hydrocarbons through Fischer–Tropsch synthesis (FTS) reaction is one of the promising chemical processes, which can convert alternative feedstocks such as natural gas or biomass into synthetic fuels. The FTS reaction has received many attentions due to a limited petroleum resource with an increased demand for using alternative carbon sources such as stranded gas or shale gas. Some proper synthetic methods of an effective FTS catalyst having a larger active metal surface area and a lower deactivation rate are the most important issues for a long-term operation. Therefore, some ordered mesoporous materials (OMM) have been widely investigated in the field of CO hydrogenation using some heterogeneous catalysts. The present brief review paper summarized the various preparation methods of the ordered mesoporous materials for the possible applications of FTS reaction with a lower deactivation rate and a higher catalytic performance. The applications of the ordered mesoporous cobalt oxides for FTS reaction are briefly introduced and the ways to improve a structural stability even under reductive CO hydrogenation conditions by using efficient pillaring materials as well as by preparing mixed metal oxides. A higher catalytic activity of the ordered mesoporous cobalt oxide was also verified in a multi-channel fixed-bed compact reactor having the intersected interlayers of micro-channel heat exchanger. The thermal stability of ordered mesoporous cobalt-based catalysts was mainly affected by a structural stability which can easily remove the heavy hydrocarbons from the inner surfaces.  相似文献   

15.
Exploring low‐cost and high‐performance nonprecious metal catalysts (NPMCs) for oxygen reduction reaction (ORR) in fuel cells and metal–air batteries is crucial for the commercialization of these energy conversion and storage devices. Here we report a novel NPMC consisting of Fe3C nanoparticles encapsulated in mesoporous Fe‐N‐doped carbon nanofibers, which is synthesized by a cost‐effective method using carbonaceous nanofibers, pyrrole, and FeCl3 as precursors. The electrocatalyst exhibits outstanding ORR activity (onset potential of ?0.02 V and half‐wave potential of ?0.140 V) closely comparable to the state‐of‐the‐art Pt/C catalyst in alkaline media, and good ORR activity in acidic media, which is among the highest reported activities of NPMCs.  相似文献   

16.
Here we demonstrate for the first time the preparation of a triflic acid (TFA)‐functionalized mesoporous nanocage with tunable pore diameters by the wet impregnation method. The obtained materials have been unambiguously characterized by XRD, N2 adsorption, FTIR spectroscopy, and NH3 temperature‐programmed desorption (TPD). From the characterization results, it has been found that the TFA molecules are firmly anchored on the surface of the mesoporous supports without affecting their acidity. We also demonstrate the effect of the pore and cage diameter of the KIT‐5 supports on the loading of TFA molecules inside the pore channels. It has been found that the total acidity of the materials increases with an increase in the TFA loading on the support, whereas the acidity of the materials decreases with an increase in the pore diameter of the support. The acidity of the TFA‐functionalized mesoporous nanocages is much higher than that of the zeolites and metal‐substituted mesoporous acidic catalysts. The TFA‐functionalized materials have also been employed as the catalysts for the synthesis of 7‐hydroxy‐4‐methylcoumarin by means of the Pechmann reaction under solvent‐free conditions. It has been found that the catalytic activity of the TFA‐functionalized KIT‐5 is much higher than that of zeolites and metal‐substituted mesoporous catalytic materials in the synthesis of coumarin derivatives. The stability of the catalyst is extremely good and can be reused several times without much loss of activity in the above reaction.  相似文献   

17.
The research of active and stable electrocatalysts toward liquid‐fuel oxidation reaction is of great significance for the large‐scale commercialization of fuel cells. Although extensive efforts have been devoted to pursuing high‐performance nanocatalysts for fuel cells, both the high cost and sluggish reaction kinetics have been two major drawbacks that limited its commercial development. In this regard, we demonstrated a facile solvothermal method for the syntheses of an advanced class of PtCu nanocatalysts with a unique pentangle‐like shape. By combining the merits of a highly active surface area as well as the synergistic and electronic effects, the as‐prepared pentangle‐like Pt3Cu nanocatalysts showed superior electrocatalytic activity towards ethylene glycol oxidation with a mass and specific activities of 5162.6 mA mg?1 and 9.7 mA cm?2, approximately 5.0 and 5.1 times higher than the commercial Pt/C, respectively. More significantly, the Pt3Cu pentangle also showed excellent long‐term stability with less activity decay and negligible changes in structure after 500 cycles, indicating another class of anode catalysts for fuel cells and beyond.  相似文献   

18.
Developing new synthetic methods for carbon supported catalysts with improved performance is of fundamental importance in advancing proton exchange membrane fuel cell (PEMFC) technology. Continuous‐flow, microfluidic reactions in capillary tube reactors are described, which are capable of synthesizing surfactant‐free, ultrafine PtSn alloyed nanoparticles (NPs) on various carbon supports (for example, commercial carbon black particles, carbon nanotubes, and graphene sheets). The PtSn NPs are highly crystalline with sizes smaller than 2 nm, and they are highly dispersed on the carbon supports with high loadings up to 33 wt %. These characteristics make the as‐synthesized carbon‐supported PtSn NPs more efficient than state of the art commercial Pt/C catalysts applied to the ethanol oxidation reaction (EOR). Significantly enhanced mass catalytic activity (two‐times that of Pt/C) and improved stability are obtained.  相似文献   

19.
Pt‐based nanomaterials play important roles in the catalytic process toward oxygen reduction reaction (ORR). Rationally regulating the composition and morphology of the catalysts could enhance the catalytic performance effectively. In this work, an effective method is presented to synthesize Pd@ mesoporous PtRu nanorattles (Pd@mPtRu NRs) containing a Pd core and a mesoporous PtRu shell. Owing to the unique structure and PtRu alloy composition, the prepared Pd@mPtRu NRs exhibit an enhanced catalytic performance and durability toward ORR relative to mesoporous PtRu hollow nanoparticles (mPtRu HNs) and commercial Pt/C. The proposed approach may provide a general way to synthesize Pt‐based yolk‐shell structures with different compositions.  相似文献   

20.
The design of robust solid catalysts which can selectively synthesize highly functionalized carbohydrate derivatives from unprotected and unactivated simple sugars in water is an outstanding challenge. Herein we describe the preparation of a novel nanospherical ordered mesoporous Lewis acid polymer (Sc(OTf)2‐NSMP) by functionalizing the mesoporous phenol‐formaldehyde polymer framework with scandium triflate groups. In the C‐glycosylation reaction between D ‐glucose and dimedone with the Sc(OTf)2‐NSMP catalyst, the conversion was 99 % and the yield of xanthone‐C‐glucoside reached 92 % after 2 days, which exceeded the previous best results. It was shown that other xanthone glycosides can be obtained from various sugars with moderate to good yields. Furthermore, the catalyst can be easily recovered and reused at least seven times without loss of catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号