首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Finding all required transition state (TS) structures is an important but hard task in theoretical study of complex reaction mechanisms. In the present article, an efficient automated TS search method, artificial force induced reaction (AFIR), was extended to intramolecular reactions. The AFIR method has been developed for intermolecular associative pathways between two or more reactants. Although it has also been applied to intramolecular reactions by dividing molecules manually into fragments, the fragmentation scheme was not automated. In this work, we propose an automated fragmentation scheme. Using this fragmentation scheme and the AFIR method, a fully automated search algorithm for intramolecular pathways is introduced. This version for intramolecular reactions is called single‐component AFIR (SC‐AFIR), to distinguish it from multicomponent AFIR for intermolecular reactions. SC‐AFIR was tested with two reactions, the Claisen rearrangement and the first step of cobalt‐catalyzed hydroformylation, and successfully located all important pathways reported in the literature. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Path‐based reaction coordinates constitute a valuable tool for free‐energy calculations in complex processes. When a reference path is defined by means of collective variables, a nonconstant distance metric that incorporates the nonorthonormality of these variables should be taken into account. In this work, we show that, accounting for the correct metric tensor, these kind of variables can provide iso‐hypersurfaces that coincide with the iso‐committor surfaces and that activation free energies equal the value that would be obtained if the committor function itself were used as reaction coordinate. The advantages of the incorporation of the variable metric tensor are illustrated with the analysis of the enzymatic reaction catalyzed by isochorismate‐pyruvate lyase. Hybrid QM/MM techniques are used to obtain the free energy profile and to analyze reactive trajectories initiated at the transition state. For this example, the committor histogram is peaked at 0.5 only when a variable metric tensor is incorporated in the definition of the path‐based coordinate. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
We describe the implementation of an adaptive umbrella sampling method, making use of the weighted histogram analysis method, for computing multidimensional potential of mean force for chemical reaction in solution. The approach is illustrated by investigating the effect of aqueous solution on the free energy surface for the proton transfer reaction of [H(3)N-H-NH(3)](+) using a combined quantum mechanical and molecular mechanical AM1/TIP3P potential.  相似文献   

4.
5.
The SCC‐DFTB/MIO/CHARMM free energy surface for a glycosyltransferase, TcTS, is benchmarked against a DFT/MM reaction trajectory using the same CHARMM MM force field ported to the NWChem package. The popular B3LYP functional, against which the MIO parameter set was parameterized is used to optimize TS structures and run DFT reaction dynamics. A novel approach was used to generate reaction forces from a SCC‐DFTB/MIO/CHARMM reaction surface to drive B3LYP/6‐31G/MM and B3LYP/6‐31G(d)/MM reaction trajectories. Although TS structures compare favorably, differences stemming primarily from a minimal basis set approximation prevented a successful 6‐31G(d) FEARCF reaction dynamics trajectory. None the less, the dynamic evolution of the B3LYP/6‐31G/MM‐computed electron density provided an opportunity to perform NBO analysis along the reaction trajectory. Here, we illustrate that a successful ab initio reaction trajectory is computationally accessible when the underlying potential energy function of the semi‐empirical method used to produce driving forces is sufficiently close to the ab initio potential. © 2017 Wiley Periodicals, Inc.  相似文献   

6.
Energy barriers for enzyme‐catalyzed reactions calculated with quantum mechanics/molecular mechanics (QM/MM) and empirical valence bond (EVB) methods can be in excellent agreement with activation energies derived from experiments, supporting the applicability of transition state theory for enzymic reactions. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

7.
Reversible phosphorylation of proteins is a post‐translational modification that regulates diverse biological processes. The molecular mechanism underlying phosphoryl transfer catalyzed by enzymes remains a subject of active debate. In particular, the nature of transition state (TS), whether it has an associative or dissociative character, has been one of the most controversial issues. Structural evidence supports associative TS, whereas physical organic studies point to a dissociative character. Here we perform hybrid quantum mechanics/molecular mechanics simulations for the reversible phosphorylation of phosphoserine phosphatase (PSP) to study the nature of the TS. Both phosphorylation and dephosphorylation reactions are investigated based on the two‐dimensional energy surfaces along phosphoryl and proton transfer coordinates. The structures of the active site at TS in both reactions reveal compact geometries, consistent with crystal structures of PSP with phosphate analogues. However, the electron density of the phosphoryl group in both TS structures slightly decreases compared with that in the reactant states. These findings suggest that the TS of PSP has a geometrically associative yet electronically dissociative character and strongly depends on proton transfer being coupled with phosphoryl transfer. Structure and literature database, which searches on phosphotransferases, suggest that such a hybrid TS is consistent with many structures and physical organic studies and likely holds for most enzymes catalyzing phosphoryl transfer. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

8.
A new method for calculating saddle points of reactions in solution is presented. The main characteristics of the method are: (1) the solute-solvent system is described by the averaged solvent electrostatic potential/molecular dynamics method (ASEP/MD). This is a quantum mechanics/molecular mechanics method (QM/MM) that makes use of the mean field approximation (MFA) and that permits one to simultaneously optimize the electronic structure and geometry of the solute molecule and the solvent structure around it. (2) The transition state is located by the joint use of the free-energy gradient method and the mean field approximation. An application to the study of the Menshutkin reaction between NH(3) and CH(3)Cl in aqueous solution is discussed. The accuracy and usefulness of the proposed method is checked through comparison with other methods.  相似文献   

9.
This perspective article mainly focuses on the development and applications of a pseudobond ab initio QM/MM approach to study enzyme reactions. The following aspects of methodology development are discussed: the approaches for the QM/MM covalent boundary problem, an efficient iterative optimization procedure, the methods to determine enzyme reaction paths, and the approaches to calculate free energy change in enzyme reactions. Several applications are described to illustrate the capability of the methods. Finally, future directions are discussed.  相似文献   

10.
Nonadiabatic quantum dynamical calculations have been carried out on the two coupled potential energy surfaces (12A′ and 22A′) (Mota et al., J Theor Comput Chem 2009, 8, 849) for the title reaction. Initial state‐resolved reaction probabilities and cross sections for ground and excited states for collision energies of 0.005–1.0 eV are determined, respectively. Nonadiabatic transition is enhanced about four times by isotopic substitution of N + NH by N + ND reaction. It turns out that the nonadiabatic effects exert no significant contribution in the N + ND → N2 + D reaction. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

11.
We performed reaction path search calculations for the NaCl·(H2O)6 cluster using the global reaction route mapping (GRRM) code to understand the atomic‐level mechanisms of the NaCl → Na+ + Cl ionic dissociation induced by water solvents. Low‐lying minima, transition states connecting two local minima and corresponding intrinsic reaction coordinates on the potential energy surface are explored. We found that the Na Cl distances at the transitions states for the dissociation pathways were distributed in a relatively wide range of 2.7–3.7 Å and that the Na Cl distance at the transition state did not correlate with the commonly used solvation coordinates. This suggests that the definition of the transition states with specific structures as well as good reaction coordinate is very difficult for the ionic dissociation process even in a small water cluster. © 2018 Wiley Periodicals, Inc.  相似文献   

12.
The formation of the tropylium ion, C7H7+, in the mass spectrum of toluene is a chemical process that has been extensively studied. There is, however, still debate as to the structure of the moieties and the reaction pathways involved. This work presents the first computationally complete reaction schemes for the formation of tropylium from toluene to be reported. The calculations were performed at the HF/6‐31G(d, p) and the DFT/B3LYP/6‐311++G(2d) levels of theory using Gaussian 03W. The previously unreported optimized structures and energies for a transition state and an intermediate in one scheme and a transition state in the other have been determined. These results are consistent with the previously reported literature and the available experimental data. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

13.
We introduce an initial implementation of the LICHEM software package. LICHEM can interface with Gaussian, PSI4, NWChem, TINKER, and TINKER–HP to enable QM/MM calculations using multipolar/polarizable force fields. LICHEM extracts forces and energies from unmodified QM and MM software packages to perform geometry optimizations, single‐point energy calculations, or Monte Carlo simulations. When the QM and MM regions are connected by covalent bonds, the pseudo‐bond approach is employed to smoothly transition between the QM region and the polarizable force field. A series of water clusters and small peptides have been employed to test our initial implementation. The results obtained from these test systems show the capabilities of the new software and highlight the importance of including explicit polarization. © 2016 Wiley Periodicals, Inc.  相似文献   

14.
MINDO/3 MO method has been used to study the mechanism of the consecutive addition of HCN to propionitrile. The results obtained for the first five steps show that the reaction is exothermic, and step 1 is the rate determining step.  相似文献   

15.
运用量子化学密度泛函理论UB3LYP/6-311+G*和高级电子相关校正的偶合簇(CCSD(T)/6-311+G*)方法,对CH3CH2,CH3CHCl和CH3CCl2自由基与NO2反应的机理和动力学进行了理论研究,得到了体系的势能面信息和可能的反应机理.根据计算得到的各反应热力学参数及反应能垒,采用传统过渡态理论计算了各反应在温度T=298 K和T=700 K时的速率常数.研究结果表明,该类反应均通过1个中间体和1个过渡态生成产物,产物分别为CH3CHO+HNO,CH3CHO+ClNO和CH3CClO+ClNO.  相似文献   

16.
The quantum trajectory method was used to study the collinear reaction H + ClH′ → HCl + H′. The potential energy surface was calculated on the QCISD(T)/6-311++G(3df,3pd) level. The reaction probabilities are in good accord with the results obtained by solving the Schroedinger equation using the finite difference method. Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 45, No. 3, pp. 156-159, May-June, 2009.  相似文献   

17.
C2H3和NO2反应势能面的理论研究   总被引:2,自引:7,他引:2  
在CCSD(T)/6—311G(d,p)//B3LYP/6—3llG(d,p)水平上给出了反应C2H3 NO2的详细势能面信息,并列出了中间体和过渡态的几何构型.通过深入分析反应路径及反应机理,得到5个能量可行的产物和6条反应通道,其中产物C2H3O NO的形成又有利,而产物CH2CO HNO则是次要产物,其他产物在通常条件下可以忽略.  相似文献   

18.
We propose a multistructural microiteration (MSM) method for geometry optimization and reaction path calculation in large systems. MSM is a simple extension of the geometrical microiteration technique. In conventional microiteration, the structure of the non‐reaction‐center (surrounding) part is optimized by fixing atoms in the reaction‐center part before displacements of the reaction‐center atoms. In this method, the surrounding part is described as the weighted sum of multiple surrounding structures that are independently optimized. Then, geometric displacements of the reaction‐center atoms are performed in the mean field generated by the weighted sum of the surrounding parts. MSM was combined with the QM/MM‐ONIOM method and applied to chemical reactions in aqueous solution or enzyme. In all three cases, MSM gave lower reaction energy profiles than the QM/MM‐ONIOM‐microiteration method over the entire reaction paths with comparable computational costs. © 2017 Wiley Periodicals, Inc.  相似文献   

19.
邹惠园  赵东霞  杨忠志 《化学学报》2013,71(11):1547-1552
应用量子力学(QM)与ABEEM浮动电荷力场(ABEEM/MM)相结合的方法研究了抗癌药物NAMI-A在水溶液中的结构性质. 所有的结构优化都是在DFT的B3LYP方法下采用6-31G(d,p)和LanL2DZ基组完成的, 没有加入任何限制性条件. 结果表明, 优化得到的NAMI-A构型受不同环境及方法的影响均有变化. 与气相中得到的构型相比, QM/MM迭代优化得到构型要比PCM的构型变化更明显. QM/MM (ABEEM/MM)迭代优化得到的NAMI-A构型比QM/MM (OPLS-AA)的变化要小. 总之, 溶剂通过极化效应对NAMI-A结构、电荷分布及径向分布函数等性质均有影响, 客观地处理极化效应才能正确地反映QM区的性质.  相似文献   

20.
The interconversions between isomers with the same spin multiplicity of neutral B6 and charged B6-and B6+ clusters have been investigated at the B3LYP/6-311+G level of theory,including determination of the minimum energy pathways with transition states connecting the corresponding reactants and products.In dynamic calculations,26 isomers were optimized,including 11 novel isomers.In order to further refine the energies,single-point B3LYP/6-311+G(3df) calculations were carried out on the corresponding B3LYP/6...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号