共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
V5+‐doped Ag/AgCl photocatalysts were prepared via the ion exchange method. The catalysts were characterized using X‐ray diffractometry, transmission electron microscopy, and energy‐dispersive X‐ray, X‐ray photoelectron, Fourier transform infrared and ultraviolet–visible spectroscopies. The V5+‐doped Ag/AgCl photocatalysts show much higher photocatalytic activities than Ag/AgCl under visible light irradiation for methyl orange (MO) decomposition. Especially, the 2.0 wt% V5+‐doped Ag/AgCl photocatalyst shows the highest photocatalytic activity and also high stability after five cycles. The MO degradation rate during each cycle is almost maintained at 97%. Electron spin resonance spectroscopy and radical trapping experiments reveal that holes play an important role in the photocatalytic process. 相似文献
3.
Nurul Asyikeen Ab Mutalib Yi Deng An-Ju Hsueh Koki Kariya Toshiaki Kurihara Hiroaki Suzuki 《Electroanalysis》2021,33(10):2123-2127
The interfacial potential difference on the surface of bipolar electrodes was controlled by placing Ag/AgCl on part of the electrode. Oxygen reduction on the cathodic pole was coupled with an electrochemiluminescence (ECL) reaction on the anodic pole. In an open bipolar system, the ECL intensity depended on the location of Ag/AgCl and the concentration of Cl− ions. A current flowed through Ag/AgCl and the ratio of currents generated at the anodic and cathodic poles was affected by the position of Ag/AgCl. Further, the effect of Ag/AgCl placement was also demonstrated in a closed bipolar system using hydrogen peroxide (H2O2) and glucose as analytes. Ag/AgCl was also effective in adjusting the sensitivity to these analytes to achieve the best performance. This method of interfacial potential control is expected to contribute toward the development of reliable sensing devices and applications such as redox cycling, which require precise potential control. 相似文献
4.
This paper reports a micro-planar Ag/AgCl quasi-reference electrode (QRE) with long-term stability which is characterized by both long-term potential stability and practical immunity to interference species, and which has been applied for use with an amperometric glucose sensor for plasma glucose. For fabrication, we coated a silver/silver chloride (Ag/AgCl) electrode first with γ-aminopropyltriethoxysilane (γ-APTES) and then with perfluorocarbon polymer (PFCP). Tests demonstrate the new electrode’s ability to remain stable over an 82-day period in 150 mM KCl, and also show its imperviousness to the effects of interference species (1 mM KI and 1 mM KBr), pH, and serum. Furthermore, in tests for glucose concentrations in plasma samples, a good correlation coefficient, 0.954 (n=30, Y=1.02X+0.20), was demonstrated between results obtained with a clinical analyzer and those obtained with an amperometric glucose sensor that used the developed Ag/AgCl QRE, showing that the Ag/AgCl QRE functions well as a reference electrode for plasma samples. 相似文献
5.
《应用有机金属化学》2017,31(11)
Plasmonic Ag/AgCl‐modified bismuth subcarbonate (Bi2O2CO3) composites were prepared by a multistep process with hydrothermal, deposition, and photoreduction in the absence of organic capping agents. The properties of the obtained Ag/AgCl/Bi2O2CO3 samples were characterized using X‐ray diffraction, field emission scanning electron microscopy and X‐ray photoelectron, UV–visible diffuse reflectance, and photoluminescence spectroscopies. The results reveal that Ag/AgCl nanoparticles are dispersed on the Bi2O2CO3 surface to achieve plasmonic Ag/AgCl/Bi2O2CO3. The Ag/AgCl/Bi2O2CO3 nanocomposites show improved rhodamine B (RhB) adsorption capacity and photocatalytic activity compared with pure Bi2O2CO3 and Ag/AgCl. In addition, the Ag/AgCl/Bi2O2CO3 composite with 20 wt% Ag/AgCl exhibits the highest photocatalytic activity and remains stable for the photodegradation of RhB under visible light. The enhanced photocatalytic activity of Ag/AgCl/Bi2O2CO3 may be attributed to the surface plasmon resonance effect of in situ generated Ag nanoparticles and synergistic effect of Ag/AgCl and Bi2O2CO3, which increase the separation efficiency of photogenerated electron–hole pairs under visible light irradiation. 相似文献
6.
Ag/AgCl@cotton‐fabric plasmonic photocatalyst has been synthesized by a facile method, which exhibits excellent stability for the decomposition of RhB and conveniency in the separation and recovery of the catalyst from the solution. 相似文献
7.
《Arabian Journal of Chemistry》2020,13(3):4538-4552
Advances in noble metal mediated Z-scheme photocatalytic system have ushered in a climax on environmental remediation. Herein, graphitic carbon nitride (GCN) and phosphorus sulphur co-doped graphitic carbon nitride (PSCN) were synthesized via calcination process. GCN, PSCN and Z-scheme visible light driven (VLD) ternary BiOBr/PSCN/Ag/AgCl nanophotocatalyst were characterized by X-ray diffraction pattern (XRD), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV–visible diffuse reflectance spectra (UV–vis DRS). BiOBr/PSCN/Ag/AgCl nanocomposite exhibited superior visible light driven photocatalytic ability as compared to pristine PSCN, AgCl and BiOBr towards degradation of phenol. The results explicated promising photocatalytic activity along with space separation of photocarriers caused via formation of BiOBr/PSCN/Ag/AgCl Z-scheme heterojunction. The visible light absorption efficacy of BiOBr/PSCN/Ag/AgCl photocatalyst was confirmed by photoluminescence (PL) spectra. Finally, recycling experiments were explored for the mechanistic detailing of phenol photodegradation employing BiOBr/PSCN/Ag/AgCl photocatalyst. After seven successive cycles photodegradation efficacy of photocatalyst was reduced to 90% from 98%. Proposed mechanism of BiOBr/PSCN/Ag/AgCl nanophotocatalyst for degradation of phenol was discussed. OH and O2− radicals were main reactive species responsible for photocatalytic phenol degradation. 相似文献
8.
Shibin Sun Lihua Dong Zhenjiang Li Yanyan Qiu 《Journal of solid state chemistry》2011,184(8):2190-2195
A novel gas-sensing material and photocatalyst was successfully obtained by decorating Ag/AgCl nanoparticles on the W18O49 nanorods through a clean photochemical route. The as-prepared samples were characterized using combined techniques of X-ray diffractometry, electron microscopy, energy dispersive X-ray spectrometry, and X-ray photoelectron spectroscopy. Gas-sensing measurements indicate that the Ag/AgCl/W18O49 NRs sensors exhibit superior reducing gas-sensing properties to those of bare W18O49 NRs, and they are highly selective and sensitive to NH3, acetone, and H2S with short response and recovery times. The Ag/AgCl/W18O49 NRs photocatlysts also possess higher photocatalytic performance than bare W18O49 NRs for degradation of methyl orange under simulated sunlight irradiation. Possible mechanisms concerning the enhancement of gas-sensing and photocatalytic activities of the Ag/AgCl/W18O49 NRs composite were proposed. 相似文献
9.
Novel F‐doped Ag/AgBr photocatalysts containing various amounts of F? were synthesized by an ion exchange method. The photocatalysts were characterized using X‐ray diffraction (XRD), scanning and transmission electron microscopies, X‐ray photoelectron, ultraviolet–visible absorption and photoluminescence spectroscopies and electron spin resonance (ESR). Powder XRD revealed that F? was inserted into the crystal lattices of AgBr and partially replaced Br?, resulting in the contraction of the AgBr lattices. Methyl orange photodegradation experiments showed that the photocatalytic activity of F‐doped Ag/AgBr was significantly dependent on the amount of F?. Ag/AgBr doped with 0.02 M F? achieved the highest activity of 91% after 8 min. ESR showed the main active species in methyl orange degradation was ?OH. The main enhancement mechanism is that F? inhibits the recombination of electron–hole pairs. 相似文献
10.
Ag(core)–AgCl(shell) microcrystal composites (Ag@AgCl) have been formed on an α-Fe2O3 film-coated SnO2 electrode by a 2 step method consisting of the electrochemical reduction of Ag+ ions and the subsequent electrochemical oxidation. The synergy of α-Fe2O3 and Ag@AgCl gave rise to a high visible light-induced reactivity (λex > 420 nm) for the oxidation of 2-naphthol (2-NAP) used as a model water pollutant in the presence and absence of oxygen. These findings were attributable to the function of Ag@AgCl composites as an excellent charge-separation promoter and built-in acceptor. 相似文献
11.
Alexander Samokhvalov Eduardus C. Duin Sachin Nair Bruce J. Tatarchuk 《Surface and interface analysis : SIA》2010,42(9):1476-1482
The Ag/titania sorbent for the ultradeep desulfurization of liquid fuels was characterized by electron spin resonance and was found to contain nearly the stoichiometric titania, without significant concentration of Ti3+ or the reactive oxygen species. The surface chemical reactions of thiophene adsorbed on the Ag/titania were studied by temperature‐programmed XPS from 25 to 525 °C upon in situ thermal annealing in high vacuum and in situ oxidation by oxygen gas. The titania support is not chemically reactive under those conditions. Silver oxide in the Ag/titania sorbent is converted to Ag2 S without formation of the transient surface sulfates or sulfites and is further oxidized by molecular oxygen. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
12.
《Macromolecular bioscience》2018,18(7)
Polyetheretherketone is attractive for dental and orthopedic applications due to its mechanical attributes close to that of human bone; however, the lack of antibacterial capability and bioactivity of polyetheretherketone has substantially impeded its clinical applications. Here, a dual therapy implant coating is developed on the 3D micro‐/nanoporous sulfonated polyetheretherketone via layer‐by‐layer self‐assembly of Ag ions and Zn ions. Material characterization studies have indicated that nanoparticles consisting of elemental Ag and ZnO are uniformly incorporated on the porous sulfonated polyetheretherketone surface. The antibacterial assays demonstrate that Ag‐decorated sulfonated polyetheretherketone and Ag/ZnO‐codecorated sulfonated polyetheretherketone effectively inhibit the reproduction of Gram‐negative and Gram‐positive bacteria. Owing to the coordination of micro‐/nanoscale topological cues and Zn induction, the Ag/ZnO‐codecorated sulfonated polyetheretherketone substrates are found to enhance biocompatibility (cell viability, spreading, and proliferation), and hasten osteodifferentiation and ‐maturation (alkaline phosphate activity (ALP) production, and osteogenesis‐related genetic expression), compared with the Ag‐decorated sulfonated polyetheretherketone and the ZnO‐decorated sulfonated polyetheretherketone counterparts. The dual therapy Ag/ZnO‐codecorated sulfonated polyetheretherketone has an appealing bacteriostatic performance and osteogenic differentiation potential, showing great potential for dental and orthopedic implants. 相似文献
13.
以硅纳米孔柱阵列(Si-NPA)为基底, 采用浸渍沉积技术制备了具有较高表面增强拉曼散射(SERS)活性的Ag/Si-NPA衬底, 并采用扫描电子显微镜和透射电子显微镜对其表面形貌和结构进行了表征. 在此基础上, 选择罗丹明6G(R6G)和结晶紫(CV)2种生物染料分子并采用不同的混合吸附程序对其共吸附状态下的SERS光谱进行了探测. 结果表明, 当2种分子的溶液浓度均为10-7 mol/L时, 无论采用何种浸渍吸附程序, 其SERS谱中CV的特征拉曼峰都被R6G完全掩盖. 对溶液采用错级配置(R6G和CV的浓度分别为10-9和10-7 mol/L)后, 所测SERS谱上获得了分别对应于R6G和CV的分离良好、相对强度匹配、分辨率高的2个SERS特征峰组, 从而有利于简化现实混合探测过程中对SERS特征峰的指认和判断. 相似文献
14.
Minoru Umeda Hiroyuki Ojima Mohamed Mohamedi Isamu Uchida 《Journal of Polymer Science.Polymer Physics》2002,40(11):1103-1109
Methanol vapor‐induced membranous changes in a cast‐coated Nafion thin film were studied through current–voltage (I–V) characteristics with an interdigitated microarray (IDA) electrode and atomic force microscopy (AFM). The obtained I–V curves showed that the as‐prepared Nafion film was stable under humidified nitrogen gas; however, the I–V profile dramatically changed with exposure to methanol vapor. Next, the morphology of the film was compared before and after methanol exposure with AFM images. On the basis of our observations, we found that the as‐prepared film had an irregularly complicated microstructure, whereas the structure became homogeneous in appearance after 30 min of exposure to methanol gas. The alternating‐current conductivity data, showing almost the same magnitude before and after exposure, strongly suggested that the I–V profile shift was based on a change in an electrode reaction mechanism induced by a change in the junction at the Nafion/IDA electrode interface. Furthermore, the methanol vapor‐pre‐exposed Nafion was stable for further exposure to methanol vapor, water vapor, or both. With the stabilized film used in combination with the IDA electrode, a reversible change in the magnitude of the current was observed when the methanol/water vapor ratio was varied. This indicated that the electrode reaction had good reproducibility after the treatment. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1103–1109, 2002 相似文献
15.
With a polarized double‐zeta basis set, we carried out MP2 and density functional theory geometry optimization of bis(2,2′‐bipyridine) interacting either with Cu(I) or Ag(I). The computed gas‐phase geometries of both Cu and Ag complexes present tetrahedral distortions around the ions. However, geometry optimization on Cu or Ag ions complexing with ammonia molecules yield perfect tetrahedral coordination and interaction energies comparable to those of the bis(2,2′‐bipyridine) complexes. Solid‐state laboratory studies on complexes of the same metal ions with substituted bis(2,2′‐bipyridine) revealed tetrahedral distortions around the ions, even stronger than those computed in the gas phase. From our analysis of the potential interaction energies we conclude that the origin of the larger distortions in the solid state result from stacking interactions. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 93: 395–404, 2003 相似文献
16.
The behavior of a modified carbon paste electrode (CPE) for simultaneous determination of copper(II) and silver(I) by anodic adsorptive stripping voltammetry (ASV) was studied. The electrode was built incorporating the bis(2‐hydroxyacetophenone) butane‐2,3‐dihydrazone (BHAB) as a complexing agent to a Nujol‐graphite base paste. The resulting electrode demonstrated linear responses over the range of Cu(II) and Ag(I) concentrations 0.1–20 and 0.01–2.0 µM respectively. The relative standard deviation (RSD) for the determination of 5.0 µM of both metal ions were 2.9 and 3.1 % for Cu(II) and Ag(I), respectively. The method has been applied to the analysis of copper in wheat and barley seed samples and silver in developed radiological film. 相似文献
17.
Xingzhong Yuan Hou Wang Yan Wu Guangming Zeng Xiaohong Chen Lijian Leng Zhibin Wu Hui Li 《应用有机金属化学》2016,30(5):289-296
In recent years, tremendous research efforts have been made towards developing metal–organic framework (MOF)‐based composites for photocatalytic applications. In this work, bipyramid‐like MIL‐125(Ti) frustum enwrapped with reduced graphene oxide (rGO) and dispersed silver nanoparticles (Ag NPs) was fabricated using an efficient one‐pot self‐assembly and photoreduction strategy. The as‐obtained materials were characterized using field emission scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, nitrogen adsorption–desorption isotherms, and X‐ray photoelectron, ultraviolet–visible diffuse reflectance and photoluminescence spectroscopies. It is found that the as‐prepared Ag/rGO/MIL‐125(Ti) ternary hybrids have large surface area, microporous structure, enhanced visible light absorption and prolonged lifetime of charge carriers. Compared with pure MIL‐125(Ti) and its binary counterparts, the ternary composite exhibits more efficient photocatalytic performance for Rhodamine B (RhB) degradation from water under visible light irradiation. The photodegradation rate of RhB on Ag/rGO/MIL‐125(Ti) is 0.0644 min?1, which is 1.62 times higher than that of the pure MIL‐125(Ti). The improved photocatalytic performance is ascribed to the indirect dye photosensitization, the Ag NP localized surface plasmon resonance, the Ti3+–Ti4+ intervalence electron transfer and the synergistic effect among MIL‐125(Ti), Ag NPs and rGO. Ag NPs serve as an efficient ‘electron reservoir’ and rGO as an electron transporter and collector. Therefore, this work provides a new pathway into the design of MOF‐based composites for application in environmental and energy fields. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
18.
D. M. Sejmanović B. B. Petković M. V. Budimir S. P. Sovilj V. M. Jovanović 《Electroanalysis》2011,23(8):1849-1855
An all solid‐state Ag(I) ion‐selective electrode has been prepared by simply immersing a glassy carbon rod coated with PVCAc, which contained plasticizer and additive but no ionophore, into the AgNO3 solution. The response of the electrode was linear with a Nernstian slope of 60.25 mV/decade within the concentration range from 1×10?1 to 1×10?5 M and with a detection limit of 4.25×10?6 M. The stability as an effect of various cations was defined. The electrode is suitable for use in high acidic solutions (pH<1 to 7) and has successfully been applied for the determination of silver(I) concentrations in different samples. 相似文献
19.
A surface‐renewable tris(1, 10‐phenanthroline‐5, 6‐dione) iron (D) hexafluorophosphate (FePD) modified carbon ceramic electrode was constructed by dispersing FePD and graphite powder in methyltrimethoxysilane (MTMOS) based gels. The FePD‐modified electrode presented pH‐dependent voltammetric behavior, and its peak currents were diffusion‐controlled in 0.1 mol/L Na2SO4 + H2SO4 solution (pH = 0.4). In the presence of iodate, dear electrocatalytic reduction waves were observed and thus the chemically modified electrode was used as an amperometric sensor for iodate in common salt. The linear range, sensitivity, detection limit and response time of the iodate sensor were 5 × 10?6–1 × 10?2 mol/L, 7.448 μA·L/ mmol, 1.2 × 10?6 mol/L and 5 s, respectively. A distinct advantage of this sensor is its good reproducibility of surface‐renewal by simple mechanical polishing. 相似文献
20.
A novel synthesized Ag/C fibrous catalyst based on in situ thermally induced redox reaction of PVA/AgNO3 composite fibers was proposed. Utilizing the plasticization and complexation of AgNO3 solution, the melt spinning of PVA/AgNO3 composites was accomplished. Through the in situ thermally induced redox reaction on PVA/AgNO3 composite fibers combined with carbonization of PVA and reduction of Ag+, the synthesized Ag/C fibrous catalyst was prepared with nanosilver particles with average diameter of 130 nm immobilized on the loose microstructural carbon layers. The synthesized Ag/C fibrous catalyst exhibited excellent catalytic activity and reused for at least five cycles for the reduction of 4‐nitrophenol, which may hold great promise in effective and eco‐friendly waste water treatment. 相似文献