首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report widens the repertoire of emerging PdI catalysis to carbon–heteroatom, that is, C?S bond formation. While Pd0‐catalyzed protocols may suffer from the formation of poisonous sulfide‐bound off‐cycle intermediates and lack of selectivity, the mechanistically diverse PdI catalysis concept circumvents these challenges and allows for C?S bond formation (S–aryl and S–alkyl) of a wide range of aryl halides. Site‐selective thiolations of C?Br sites in the presence of C?Cl and C?OTf were achieved in a general and a priori predictable fashion. Computational, spectroscopic, X‐ray, and reactivity data support dinuclear PdI catalysis to be operative. Contrary to air‐sensitive Pd0, the active PdI species was easily recovered in the open atmosphere and subjected to multiple rounds of recycling.  相似文献   

2.
Controlled oxidation of palladium nanoparticles provided high‐valent PdIV oxo‐clusters which efficiently promote directed C−H halogenation reactions. In addition, palladium nanoparticles can undergo changes in oxidation states to provide both high‐valent PdIV and low‐valent Pd0 species within one system, and thus a tandem reaction of C−H halogenation and cross‐coupling (C−N, C−C, and C−S bond formation) was successfully established.  相似文献   

3.
While there is a growing interest in harnessing synergistic effects of more than one metal in catalysis, relatively little is known beyond bimetallic systems. This report describes the straightforward access to an air‐stable Pd trimer and presents unambiguous reactivity data of its privileged capability to differentiate C?I over C?Br bonds in C?C bond formations (arylation and alkylation) of polyhalogenated arenes, which typical Pd0 and PdI‐PdI catalysts fail to deliver. Experimental and computational reactivity data, including the first location of a transition state for bond activation by the trimer, are presented, supporting direct trimer reactivity to be feasible.  相似文献   

4.
An environmentally friendly electrocatalytic protocol has been developed for dehydrogenative C−H/S−H cross‐coupling. This method enabled C−S bond formation under catalyst‐ and oxidant‐free conditions. Under undivided electrolysis conditions, various aryl/heteroaryl thiols and electron‐rich arenes afforded the C−S bond‐formation products in 24–99 % yield. A preliminary mechanistic study indicated that the generation of aryl radical cation intermediates is key to the success of this transformation.  相似文献   

5.
Selective C –C couplings are powerful strategies for the rapid and programmable construction of bi‐ or multiaryls. To this end, the next frontier of synthetic modularity will likely arise from harnessing the coupling space that is orthogonal to the powerful Pd‐catalyzed coupling regime. This report details the realization of this concept and presents the fully selective arylation of aryl germanes (which are inert under Pd0/PdII catalysis) in the presence of the valuable functionalities C?BPin, C?SiMe3, C?I, C?Br, C?Cl, which in turn offer versatile opportunities for diversification. The protocol makes use of visible light activation combined with gold catalysis, which facilitates the selective coupling of C?Ge with aryl diazonium salts. Contrary to previous light‐/gold‐catalyzed couplings of Ar–N2+, which were specialized in Ar–N2+ scope, we present conditions to efficiently couple electron‐rich, electron‐poor, heterocyclic and sterically hindered aryl diazonium salts. Our computational data suggest that while electron‐poor Ar–N2+ salts are readily activated by gold under blue‐light irradiation, there is a competing dissociative deactivation pathway for excited electron‐rich Ar–N2+, which requires an alternative photo‐redox approach to enable productive couplings.  相似文献   

6.
《化学:亚洲杂志》2017,12(7):734-743
A transition‐metal (TM)‐free and halogen‐free NaOt Bu‐mediated oxidative cross‐coupling between the sp3 C−H bond of oxindoles and sp2 C−H bond of nitroarenes has been developed to access 3‐aryl substituted and 3,3‐aryldisubstituted oxindoles in DMSO at room temperature in a short time. Interestingly, the sp3 C−H bond of oxindoles could also react with styrene under TM‐free conditions for the practical synthesis of quaternary 3,3‐disubstituted oxindoles. The synthesized 3‐oxindoles have also been further transformed into advanced heterocycles, that is, benzofuroindoles, indoloindoles, and substituted indoles. Mechanistic experiments of the reaction suggests the formation of an anion intermediate from the sp3 C−H bond of oxindole by tert ‐butoxide base in DMSO. The addition of nitrobenzene to the in‐situ generated carbanion leads to the 3‐(nitrophenyl)oxindolyl carbanion in DMSO which is subsequently oxidized to 3‐(nitro‐aryl) oxindole by DMSO.  相似文献   

7.
Full control over multiple competing coupling sites would enable straightforward access to densely functionalized compound libraries. Historically, the site selection in Pd0‐catalyzed functionalizations of poly(pseudo)halogenated arenes has been unpredictable, being dependent on the employed catalyst, the reaction conditions, and the substrate itself. Building on our previous report of C−Br‐selective functionalization in the presence of C−OTf and C−Cl bonds, we herein complete the sequence and demonstrate the first general arylations and alkylations of C−OTf bonds (in <10 min), followed by functionalization of the C−Cl site (in <25 min), at room temperature using the same air‐ and moisture‐stable PdI dimer. This allowed the realization of the first general and triply selective sequential C−C coupling (in 2D and 3D space) of C−Br followed by C−OTf and then C−Cl bonds.  相似文献   

8.
While palladium catalysis is ubiquitous in modern chemical research, the recovery of the active transition‐metal complex under routine laboratory applications is frequently challenging. Described herein is the concept of alternative cross‐coupling cycles with a more robust (air‐, moisture‐, and thermally‐stable) dinuclear PdI complex, thus avoiding the handling of sensitive Pd0 species or ligands. Highly efficient C? SCF3 coupling of a range of aryl iodides and bromides was achieved, and the recovery of the PdI complex was accomplished via simple open‐atmosphere column chromatography. Kinetic and computational data support the feasibility of dinuclear PdI catalysis. A novel SCF3‐bridged PdI dimer was isolated, characterized by X‐ray crystallography, and verified to be a competent catalytic intermediate.  相似文献   

9.
Decarboxylative cross‐coupling reactions of substituted 2‐carboxyazine N‐oxides, with a variety of (hetero)aryl halides, by bimetallic Pd0/CuI and Pd0/AgI catalysis are reported. Two possible pathways, a conventional bimetallic‐catalyzed decarboxylative arylation, as well as a protodecarboxylative/direct C?H arylation sequence have been considered. These methods provide the first general decarboxylative arylation methodology for the 2‐carboxyazine series.  相似文献   

10.
A palladium‐catalyzed enantioselective intramolecular σ‐bond cross‐exchange between C?I and C?C bonds is realized, providing chiral indanones bearing an alkyl iodide group and an all‐carbon quaternary stereocenter. Pd/TADDOL‐derived phosphoramidite is found to be an efficient catalytic system for both C?C bond cleavage and alkyl iodide reductive elimination. In addition to aryl iodides, aryl bromides can also be used for this transformation in the presence of KI. Density‐functional theory (DFT) calculation studies support the ring‐opening of cyclobutanones occuring through an oxidative addition/reductive elimination process involving PdIV species.  相似文献   

11.
Building on our recent disclosure of catalysis at dinuclear PdI sites, we herein report the application of this concept to the realization of the first catalytic method to convert aryl iodides into the corresponding ArSeCF3 compounds. Highly efficient C? SeCF3 coupling of a range of aryl iodides was achieved, enabled by an air‐, moisture‐, and thermally stable dinuclear PdI catalyst. The novel SeCF3‐bridged dinuclear PdI complex 3 was isolated, studied for its catalytic competence and shown to be recoverable. Experimental and computational data are presented in support of dinuclear PdI catalysis.  相似文献   

12.
While chemoselectivities in Pd0‐catalyzed coupling reactions are frequently non‐intuitive and a result of a complex interplay of ligand/catalyst, substrate, and reaction conditions, we herein report a general method based on PdI that allows for an a priori predictable chemoselective C −C coupling at C−Br in preference to C−OTf and C−Cl bonds, regardless of the electronic or steric bias of the substrate. The C−C bond formations are extremely rapid (<5 min at RT) and are catalyzed by an air‐ and moisture‐stable PdI dimer under open‐flask conditions.  相似文献   

13.
Silacyclobutane was discovered to be an efficient C?H bond silylation reagent. Under the catalysis of RhI/TMS‐segphos, silacyclobutane undergoes sequential C?Si/C?H bond activations, affording a series of π‐conjugated siloles in high yields and regioselectivities. The catalytic cycle was proposed to involve a rarely documented endocyclic β‐hydride elimination of five‐membered metallacycles, which after reductive elimination gave rise to a Si?RhI species that is capable of C?H activation.  相似文献   

14.
Pyridine activation by inexpensive iron catalysts has great utility, but the steps through which iron species can break the strong (105–111 kcal mol−1) C−H bonds of pyridine substrates are unknown. In this work, we report the rapid room‐temperature cleavage of C−H bonds in pyridine, 4‐tert‐butylpyridine, and 2‐phenylpyridine by an iron(I) species, to give well‐characterized iron(II) products. In addition, 4‐dimethylaminopyridine (DMAP) undergoes room‐temperature C−N bond cleavage, which forms a dimethylamidoiron(II) complex and a pyridyl‐bridged tetrairon(II) square. These facile bond‐cleaving reactions are proposed to occur through intermediates having a two‐electron reduced pyridine that bridges two iron centers. Thus, the redox non‐innocence of the pyridine can play a key role in enabling high regioselectivity for difficult reactions.  相似文献   

15.
We have developed a method for palladium‐catalyzed, pyrazole‐directed sp3 C−H bond arylation by aryl iodides. The reaction employs a Pd(OAc)2 catalyst at 5–10 mol % loading and silver(I) oxide as a halide‐removal agent, and it proceeds in acetic acid or acetic acid/hexafluoroisopropanol solvent. Ozonolysis of the pyrazole moiety affords pharmaceutically important β‐phenethylamines.  相似文献   

16.
Metal–Lewis acid cooperation provides new opportunities in catalysis. In this work, we report a new type of palladium–borane cooperation involving anionic Pd0 species. The air‐stable DPB palladium complex 1 (DPB=diphosphine‐borane) was prepared and reacted with KH to give the Pd0 borohydride 2 , the first monomeric anionic Pd0 species to be structurally characterized. The boron moiety acts as an acceptor towards Pd in 1 via Pd→B interaction, but as a donor in 2 thanks to B‐H‐Pd bridging. This enables the activation of C?Cl bonds and the system is amenable to catalysis, as demonstrated by the hydro‐/deutero‐dehalogenation of a variety of (hetero)aryl chlorides (20 examples, average yield 85 %).  相似文献   

17.
Despite recent progress in the catalytic transformation of inert phenol derivatives as alternatives to aryl halides and triflates, attempts at the cross‐coupling of inert phenol derivatives with the C−H bonds of arenes have met with limited success. Herein, we report the rhodium‐catalyzed cross‐coupling of aryl carbamates with arenes bearing a convertible directing group. The key to success is the use of an in situ generated rhodium bis(N‐heterocyclic carbene) species as the catalyst, which can promote activation of the inert C(sp2)−O bond in aryl carbamates.  相似文献   

18.
Mono‐N‐protected amino acids (MPAAs) are increasingly common ligands in Pd‐catalyzed C?H functionalization reactions. Previous studies have shown how these ligands accelerate catalytic turnover by facilitating the C?H activation step. Here, it is shown that MPAA ligands exhibit a second property commonly associated with ligand‐accelerated catalysis: the ability to support catalytic turnover at substoichiometric ligand‐to‐metal ratios. This catalytic role of the MPAA ligand is characterized in stoichiometric C?H activation and catalytic C?H functionalization reactions. Palladacycle formation with substrates bearing carboxylate and pyridine directing groups exhibit a 50–100‐fold increase in rate when only 0.05 equivalents of MPAA are present relative to PdII. These and other mechanistic data indicate that facile exchange between MPAAs and anionic ligands coordinated to PdII enables a single MPAA to support C?H activation at multiple PdII centers.  相似文献   

19.
Herein, we report the redox‐neutral, intermolecular, and highly branch‐selective amidation of allylic C?H bonds enabled by Cp*IrIII catalysis. A variety of readily available carboxylic acids were converted into the corresponding dioxazolones and efficiently coupled with terminal and internal olefins in high yields and selectivities. Mechanistic investigations support the formation of a nucleophilic IrIII–allyl intermediate rather than the direct insertion of an Ir–nitrenoid species into the allylic C?H bond.  相似文献   

20.
《化学:亚洲杂志》2018,13(18):2606-2610
The transition‐metal‐catalyzed formal C−C bond insertion reaction of diazo compounds with monocarbonyl compounds is well established, but the related reaction of 1,3‐diketones instead gives C−H bond insertion products. Herein, we report a protocol for a gold‐catalyzed formal C−C bond insertion reaction of 2‐aryl‐2‐diazoesters with 1,3‐diketones, which provides efficient access to polycarbonyl compounds with an all‐carbon quaternary center. The aryl ester moiety plays a crucial role in the unusual chemoselectivity, and the addition of a Brønsted acid to the reaction mixture improves the yield of the C−C bond insertion product. A reaction mechanism involving cyclopropanation of a gold carbenoid with an enolate and ring‐opening of the resulting donor–acceptor‐type cyclopropane intermediate is proposed. This mechanism differs from that of the traditional Lewis‐acid‐catalyzed C−C bond insertion reaction of diazo compounds with monocarbonyl compounds, which involves a rearrangement of a zwitterion intermediate as a key step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号