首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Crizotinib is a small molecule inhibitor of anaplastic lymphoma kinase (ALK) and can be used to treat ALK‐positive nonsmall‐cell lung cancer. A rapid and simple high‐performance liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the quantification of crizotinib in rat plasma using a chemical synthetic compound buspirone as the internal standard (IS). The plasma samples were pretreated by a simple protein precipitation with methanol–acetonitrile (1:1, v/v). Chromatographic separation was successfully achieved on an Agilent Zorbax XDB C18 column (2.1 × 50 mm, 3.5 µm). The gradient elution system was composed of 0.1% formic acid aqueous solution and 0.1% formic acid in methanol solution. The flow rate was set at 0.50 mL/min. The multiple reaction monitoring was based on the transitions of m/z = 450.3 → 177.1 for crizotinib and 386.2 → 122.2 for buspirone (IS). The assay was successfully validated to demonstrate the selectivity, matrix effect, linearity, lower limit of quantification, accuracy, precision, recovery and stability according to the international guidelines. The lower limit of quantification was 1.00 ng/mL in 50 μL of rat plasma. This LC‐MS/MS assay was successfully applied to the quantification and pharmacokinetic study of crizotinib in rats after intravenous and oral administration of crizotinib. The oral absolute bioavailability of crizotinib in rats was 68.6 ± 9.63%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
A simultaneous, selective, sensitive and rapid liquid chromatography/tandem mass spectrometry method was developed and validated for the quantification of gefitinib, erlotinib and afatinib in 250 μL samples of human blood plasma. Diluted plasma samples were extracted using a liquid‐phase extraction procedure with tert‐butyl methyl ether. The three drugs were separated by high‐performance liquid chromatography using a C18 column and an isocratic mobile phase running at a flow rate of 0.2 mL/min for 5 min. The drugs were detected using a tandem mass spectrometer with electrospray ionization using imatinib as an internal standard. Calibration curves were generated over the linear concentration range of 0.05–100 nm in plasma with a lower limit of quantification of 0.01 or 0.05 nm for all compounds. Finally, the validated method was applied to a clinical pharmacokinetic study in patients with nonsmall‐cell lung cancer (NSCLC) following the oral administration of afatinib. These results indicate that this method is suitable for assessing the risks and benefits of chemotherapy in patients with NSCLC and is useful for therapeutic drug monitoring for NSCLC treatment. As far as we know, this is the first report on LC‐MS/MS method for the simultaneous quantification of NSCLC tyrosine kinase inhibitor plasma concentrations including afatinib. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
To support pharmacokinetic‐guided dosing in individual patients, a fast and accurate method for simultaneous determination of anticancer tyrosine kinase inhibitors (TKIs) dasatinib, erlotinib, gefitinib, imatinib, lapatinib, nilotinib, sorafenib and sunitinib in human plasma was developed using high‐performance liquid chromatography and detection with tandem mass spectrometry (HPLC‐MS/MS). Stable isotopically labeled compounds of the eight different TKIs were used as internal standards. Plasma proteins were precipitated and an aliquot of supernatant was directly injected onto a reversed phase chromatography system consisting of a Gemini C18 column (50 × 2.0 mm i.d., 5.0 µm particle size) and then compounds were eluted with a gradient. The outlet of the column was connected to a triple quadrupole mass spectrometer with electrospray interface. Ions were detected in the positive multiple reaction monitoring mode. This method was validated over a linear range from 20.0 to 10,000 ng/mL for erlotinib, gefitinib, imatinib, lapatinib, nilotinib and sorafenib, and from 5.00 to 2500 ng/mL for dasatinib and sunitinib. Results from the validation study demonstrated good intra‐ and inter‐assay accuracy (<13.1%) and precision (10.0%) for all analytes. This method was successfully applied for routine therapeutic drug monitoring purposes in patients treated with the investigated TKIs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
A simple, sensitive, and selective liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the simultaneous quantification of olanzapine (OLZ) and its metabolite N‐desmethylolanzapine (DMO) in human plasma for therapeutic drug monitoring. Sample preparation was performed by one‐step protein precipitation with methanol. The analytes were chromatographed on a reversed‐phase YMC‐ODS‐AQ C18 Column (2.0 × 100 mm,3 µm) by a gradient program at a flow rate of 0.30 mL/min. Quantification was performed on a triple quadrupole tandem mass spectrometer via electrospray ionization in positive ion mode. The method was validated for selectivity, linearity, accuracy, precision, matrix effect, recovery and stability. The calibration curve was linear over the concentration range 0.2–120 ng/mL for OLZ and 0.5–50 ng/mL for DMO. Intra‐ and interday precisions for OLZ and DMO were <11.29%, and the accuracy ranged from 95.23 to 113.16%. The developed method was subsequently applied to therapeutic drug monitoring for psychiatric patients receiving therapy of OLZ tablets. The method seems to be suitable for therapeutic drug monitoring of patients undergoing therapy with OLZ and might contribute to prediction of the risk of adverse reactions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The interest in therapeutic drug monitoring has increased over the last few years. Inter‐ and intra‐patient variability in pharmacokinetics, plasma concentration related toxicity and success of therapy have stressed the need of frequent therapeutic drug monitoring of the drugs. A sensitive, selective and rapid liquid chromatography coupled with tandem mass spectrometry (LC‐MS/MS) method was developed for the simultaneous quantification of acetylsalicylic acid (aspirin), salicylic acid, clopidogrel and carboxylic acid metabolite of clopidogrel in human plasma. The chromatographic separations were achieved on Waters Symmetry ShieldTM C18 column (150 × 4.6 mm, 5 µm) using 3.5 mm ammonium acetate (pH 3.5)–acetonitrile (10:90, v/v) as mobile phase at a flow rate of 0.75 mL/min. The present method was successfully applied for therapeutic drug monitoring of aspirin and clopidogrel in 67 patients with coronary artery disease. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
A sensitive and selective ultra-high performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method for the simultaneous determination of seven oral oncolytics (two PARP inhibitors, i.e. olaparib and niraparib, and five tyrosine kinase inhibitors, i.e. cobimetinib, cabozantinib, dabrafenib, vemurafenib and regorafenib, plus its active metabolite regorafenib M2) in EDTA plasma was developed and validated. Stable isotope-labelled internal standards were used for each analyte. A simple protein precipitation method was performed with acetonitrile. The LC–MS/MS system consisted of an Acquity H-Class UPLC system, coupled to a Xevo TQ-S micro tandem mass spectrometer. The compounds were separated on a Waters CORTECS UPLC C18 column (2.1 × 50 mm, 1.6 μm particle size) and eluted with a gradient elution system. The ions were detected in the multiple reaction monitoring mode. The method was validated for cobimetinib, cabozantinib, dabrafenib, niraparib, olaparib, vemurafenib, regorafenib and regorafenib M2 over the ranges 6–1000, 100–5000, 10–4000, 200–2000, 200–20,000, 5000–100,000, 500–10,000 and 500–10,000 μg/L, respectively. Within-day accuracy values for all analytes ranged from 86.8 to 115.0% with a precision of <10.4%. Between-day accuracy values ranged between 89.7 and 111.9% with a between-day precision of <7.4%. The developed method was successfully used for guiding therapy with therapeutic drug monitoring in cancer patients and clinical research programs in our laboratory.  相似文献   

7.
A novel, rapid and sensitive liquid chromatography tandem–mass spectrometry method for quantification of vemurafenib in human plasma, that also for the first time allows for metabolite semi‐quantification, was developed and validated to support clinical trials and therapeutic drug monitoring. Vemurafenib was analysed by precipitation with methanol followed by a 1.9 min isocratic liquid chromatography tandem masspectrometry analysis using an Acquity BEH C18 column with methanol and formic acid using isotope labelled internal standards. Analytes were detected in multireaction monitoring mode on a Xevo TQ. Semi‐quantification of vemurafenib metabolites was performed using the same analytical system and sample preparation with gradient elution. The vemurafenib method was successfully validated in the range 0.5–100 μg/mL according to international guidelines. The metabolite method was partially validated owing to the lack of commercially available reference materials. For the first time concentration levels at steady state for melanoma patients treated with vemurafenib is presented. The low abundance of vemurafenib metabolites suggests that they lack clinical significance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
A high‐performance liquid chromatographic assay with tandem mass spectrometric detection was developed to simultaneously quantify fluoxetine and olanzapine in human plasma. The analytes and the internal standard (IS) duloxetine were extracted from 500 μL aliquots of human plasma through solid‐phase extraction. Chromatographic separation was achieved in a run time of 4.0 min on a Hypersil Gold C18 column (50 × 4.6 mm, 5 µm) using isocratic mobile phase consisting of acetonitrile–water containing 2% formic acid (70:30, v/v), at a flow‐rate of 0.5 mL/min. Detection of analytes and internal standard was performed by electrospray ionization tandem mass spectrometry, operating in positive‐ion and multiple reaction monitoring acquisition mode. The protonated precursor to product ion transitions monitored for fluoxetine, olanzapine and IS were m/z 310.01 → 147.69, 313.15 → 256.14 and 298.1 → 153.97, respectively. The method was validated over the concentration range of 1.00–150.20 ng/mL for fluoxetine and 0.12–25.03 ng/mL for olanzapine in human plasma. The intra‐batch and inter‐batch precision (%CV) across four quality control levels was ≤6.28% for both the analytes. In conclusion, a simple and sensitive analytical method was developed and validated in human plasma. This method is suitable for measuring accurate plasma concentration in bioequivalence study and therapeutic drug monitoring as well, following combined administration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
A rapid, sensitive and selective liquid chromatography/tandem mass spectrometry method (LC‐MS/MS) was developed and validated for simultaneous determination of albiflorin and paeoniflorin in rat plasma using geniposide as an internal standard. Plasma samples were extracted by solid‐phase extraction. Chromatographic separation was carried out on a Zorbax SB‐C18 analytical column (150 × 2.1 mm × 5 µm) with 0.1% formic acid–acetonitrile (70:30, v/v) as the mobile phase. Detection was performed by multiple reaction monitoring mode using electrospray ionization in the positive ion mode. The total run time was 3.0 min between injections. The calibration curves were linear over a range of 1–1000 ng/mL for albiflorin and 2–2000 ng/mL for paeoniflorin. The overall precision and accuracy for all concentrations of quality controls and standards were better than 15%. Mean recovery was determined to be 87.7% for albiflorin and 88.8% for paeoniflorin. The validated method was successfully applied to the pharmacokinetic study of albiflorin and paeoniflorin in rat plasma after oral administration of Radix Paeoniae Alba extract and Tang‐Min‐Ling‐Wan. The pharmacokinetic parameters showed that albiflorin and paeoniflorin from Tang‐Min‐Ling‐Wan were absorbed more rapidly with higher concentrations in plasma than that from Radix Paeoniae Alba extract. The results provided a meaningful basis for evaluating the clinical applications of traditional Chinese medicine. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Therapeutic drug monitoring of antiepileptic drugs is widely practiced to achieve optimal efficacy and avoid adverse side effects. We describe an ultra‐high‐performance liquid chromatography tandem mass spectrometry (UHPLC/MS/MS) method developed for the monitoring of four frequently prescribed antiepileptic drugs – lamotrigine, levetiracetam, oxcarbazepine and topiramate. The main pharmacologically active metabolite of oxcarbazepine (mono‐hydroxy‐derivative metabolite, MHD) was also quantified. After addition of internal standards and a simple stage of protein precipitation, plasmatic samples were analyzed on a C18 column. All antiepileptic drugs were separated and quantified in 6 min, without interference. A good linearity was observed all over the calibration range (r2 > 0.99), up to 20 μg/mL (40 μg/mL for MHD). The limit of quantification was 0.20 μg/mL (0.40 μg/mL for MHD) with precision and accuracy ranging from 1.0 to 2.1% and from 96.7 to 110.8%, respectively. Intra‐ and inter‐day precision and accuracy values were within 15%. No significant matrix effect was observed for all analytes. Clinical application was successfully evaluated in 259 samples from patients treated for epilepsy or bipolar disorders. In conclusion, a rapid, specific and sensitive UHPLC/MS/MS method was developed and validated for simultaneous quantification of antiepileptic drugs, suitable for therapeutic drug monitoring in neurology and psychiatry.  相似文献   

11.
12.
4‐Methyl‐piperazine‐1‐carbodithioc acid 3‐cyano‐3, 3‐diphenylpropyl ester hydrochloride (TM208), a newly synthesized anticancer compound, was quantified using liquid chromatography–tandem mass spectrometry (LC‐MS/MS) for the first time. A simple, rapid and sensitive assay method using propranolol as internal standard (IS) after one‐step precipitation with acetonitrile was developed and validated to determine TM208 in rat plasma. Separation was achieved on a reverse‐phase C18 column with a mobile phase composed of methanol–water (pH4.0) containing 5 m m ammonium acetate in gradient elution mode. A triple quadrupole tandem mass spectrometer with electrospray ionization source was used as detector and operated by multiple reaction monitoring in the positive ion mode. Calibration curves were linear (r > 0.99) between 0.2 and 500 ng/mL. The quantitative limit was 0.2 ng/mL; reliable precision and accuracy were validated by relative standard deviation values in the range 3.44–13.15% and relative error values between ?0.58 and ?9.78%. The method was successfully applied to preclinical pharmacokinetic studies of TM208. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
In this study, a sensitive, selective and reproducible liquid chromatography–tandem mass spectrometry method for the simultaneous determination of 1,5‐dicaffeoylquinic acid (1,5‐DCQA) and its active metabolites, 1‐caffeoyl‐5‐feruoylquinic acid and 1,5‐O‐diferuoylquinic acid, in human plasma, using puerarin as internal standard, was developed and validated. Analytes were extracted from plasma samples by liquid–liquid extraction with ethyl acetate, separated on a C18 reversed‐phase column with water containing 5 mM ammonium acetate and acetonitrile as the mobile phase and detected by electrospray ionization mass spectrometry in negative selected reaction monitoring mode. The accuracy and precision of the method were acceptable and linearity was good over the range 1–200 ng/mL for each analyte. In addition, the selectivity, extraction recovery and matrix effect were satisfactory too. The validated LC‐MS/MS method was successfully applied to phase II clinical pharmacokinetic study of 1,5‐DCQA in patients. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
In this study, a liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated to simultaneously determine the anticancer drugs etoposide and paclitaxel in mouse plasma and tissues including liver, kidney, lung, heart, spleen and brain. The analytes were extracted from the matrices of interest by liquid–liquid extraction using methyl tert‐butyl ether–dichloromethane (1:1, v/v). Chromatographic separation was achieved on an Ultimate XB‐C18 column (100 × 2.1 mm, 3 μm) at 40°C and the total run time was 4 min under a gradient elution. Ionization was conducted using electrospray ionization in the positive mode. Stable isotope etoposide‐d3 and docetaxel were used as the internal standards. The lower limit of quantitation (LLOQ) of etoposide was 1 ng/g tissue for all tissues and 0.5 ng/mL for plasma. The LLOQ of paclitaxel was 0.4 ng/g tissue and 0.2 ng/mL for all tissues and plasma, respectively. The coefficients of correlation for all of the analytes in the tissues and plasma were >0.99. Both intra‐ and inter‐day accuracy and precision were satisfactory. This method was successfully applied to measure plasma and tissue drug concentrations in mice treated with etoposide and paclitaxel‐loaded self‐microemulsifying drug‐delivery systems.  相似文献   

15.
A liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for the determination of GDC‐0425 concentrations in human plasma has been developed and validated. Supported liquid extraction was used to extract plasma samples (50 μL) and the resulting samples were analyzed using reverse‐phase chromatography and mass spectrometry coupled with a turbo‐ionspray interface. The mass analysis of GDC‐0425 was performed using multiple reaction monitoring transitions in positive ionization mode. The method was validated over the calibration curve range of 1.00–1000 ng/mL using linear regression and 1/x2 weighting. Within‐run relative standard deviation ranged from 0.8 to 5.1%, while between‐run RSD varied from 1.9 to 4.7% for QCs. The accuracy ranged from 90.0 to 101.0% of nominal for within‐run and from 94.0 to 100.0% of nominal for between‐run. Overall extraction recovery was 87.4% for GDC‐0425 and 87.9% for GDC‐0425‐d9. Stability of GDC‐0425 was established in human plasma for 374 days at ?20 and ?70 °C and established in reconstituted sample extracts for 88 h when stored at 2–8 °C. Stable‐labeled internal standard was used to minimize matrix effects. This assay was used to characterize the pharmacokinetics of GDC‐0425 in cancer patients.  相似文献   

16.
An analytical method using high‐performance liquid chromatography/electrospray ionization tandem mass spectrometry has been developed and validated for simultaneous measurement of four tyrosine kinase inhibitors used for renal cell carcinoma and their metabolites in human plasma. Despite their similar structures, it is difficult to measure plasma levels of these compounds simultaneously using optimal MS parameters for each compound because a quantitative range exceeding 50,000‐fold is required. To overcome this problem, we used a linear range shift technique using in‐source collision‐induced dissociation. Linearity ranges of sorafenib, sorafenib N‐oxide, sunitinib, N‐desethyl sunitinib, axitinib and pazopanib were 100–10,000, 10–1,000, 1–100, 1–100, 1–100 and 500–50,000 ng/mL, respectively. The intra‐ and inter‐day precision and accuracy were high, and coefficients of variation and relative error were <10.3% and within ±11.8%, respectively. The matrix effects of all analytes ranged from 87.7 to 114.8%. Extraction recoveries and overall recoveries showed small extraction loss (<15.0%) for all analytes. Moreover, all cancer patient samples used in this study were successfully quantified and fell within the linear range of measurement. Therefore, this novel analytical system using in‐source collision‐induced dissociation has sufficient performance to measure plasma concentrations of these four tyrosine kinase inhibitors and their metabolites for therapeutic drug monitoring.  相似文献   

17.
A simple and highly sensitive liquid chromatography–tandem mass spectrometry (LC‐MS/MS) bioanalytical method was developed and fully validated for the first time for the simultaneous determination of newly discovered antiviral drugs, namely sofosbuvir (SOF) and daclatasvir (DAC) in human plasma. Tadalafil (TAD) was used as internal standard (IS). SOF, DAC and TAD (IS) were extracted from plasma using liquid–liquid extraction technique with methyl tert‐butyl ether. The chromatographic separation was carried out using ZorbaxSB‐C18 column (4.6 × 50 mm,5 μm) and 5 mm ammonium formate buffer (pH 3.5)–acetonitrile (50:50, v/v) as mobile phase in an isocratic elution mode pumped at a flow rate 0.7 mL min−1. The quantitation was performed on API4500 triple quadrupole tandem mass spectrometer with positive electrospray ionization interface in multiple reaction monitoring mode. Validation was applied according to US Food and Drug Administration guidelines for bio‐analytical methodswith respect to linearity, precision, accuracy, selectivity, carry‐over, stability and dilution integrity. Linearity was obtained over concentration ranges of 0.3–3000 and 3–3000 ng mL−1 for SOF and DAC, respectively, by applying a weighted least‐squares linear regression method (1/x2). The proposed method could be applied successfully in bioequivalence and/or clinical studies for therapeutic drug monitoring of patients undergoing dual combination therapy as the latter combination proved more efficacious and powerful tool for the complete treatment of hepatitis C genotype 3 within 16 weeks. The suggested method has been applied successfully to pharmacokinetic studies with excellent assay ruggedness and reproducibility.  相似文献   

18.
A sensitive and efficient liquid chromatography tandem mass spectrometry method was developed and validated for the simultaneous determination of piperaquine (PQ) and its N ‐oxidated metabolite (PQ‐M) in plasma. A simple protein precipitation procedure was used for sample preparation. Adequate chromatographic retention was achieved on a C18 column under gradient elution with acetonitrile and 2 mm aqueous ammonium acetate containing 0.15% formic acid and 0.05% trifluoroacetic acid. A triple‐quadrupole mass spectrometer equipped with an electrospray source was set up in the positive ion mode and multiple reaction monitoring mode. The method was linear in the range of 2.0–400.0 ng/mL for PQ and 1.0–50.0 ng/mL for PQ‐M with suitable accuracy, precision and extraction recovery. The lower limits of detection (LLOD) were established at 0.4 and 0.2 ng/mL for PQ and PQ‐M, respectively, using 40 μL of plasma sample. The matrix effect was negligible under the current conditions. No effect was found for co‐administrated artemisinin drugs or hemolysis on the quantification of PQ and PQ‐M. Stability testing showed that two analytes remained stable under all relevant analytical conditions. The validated method was successfully applied to a pharmacokinetic study performed in rats after a single oral administration of PQ (60 mg/kg).  相似文献   

19.
A selective, rapid, and sensitive liquid chromatography–tandem mass spectrometry(LC‐MS/MS) method was developed and validated for the determination of letrozole (LTZ) in human plasma, using anastrozole as internal standard (IS). Sample preparation was performed by one‐step protein precipitation with methanol. The analyte and IS were chromatographed on a reversed‐phase YMC‐ODS‐C18 column (2.0 × 100 mm i.d., 3 µm) with a flow rate of 0.3 mL/min. The mobile phase consisted of water containing 0.1% formic acid (v/v) and methanol containing 0.1% formic acid (v/v). The mass spectrometer was operated in selected reaction monitoring mode through electrospray ionization ion mode using the transitions of m/z 286.2 → 217.1 for LTZ and m/z 294.1 → 225.1 for IS, respectively. The method was validated for selectivity, linearity, lower limit of quantitation, precision, accuracy, matrix effects and stability in accordance with the US Food and Drug Administration guidelines. Linear calibration curves were 1.0–60.0 ng/mL. Intra‐ and inter‐batch precision (CV) for LTZ were <9.34%, and the accuracy ranged from 97.43 to 105.17%. This method was successfully used for the analysis of samples from patients treated with LTZ in the dose of 2.5 mg/day. It might be suitable for therapeutic drug monitoring of these patients and contribute to predict the risk of adverse reactions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
A highly feasible and reliable ultra‐high performance liquid chromatography tandem mass spectrometry method was presented for therapeutic drug monitoring of five anti‐schizophrenic drugs (amisulpride, olanzapine, aripiprazole, paliperidone and ziprasidone) simultaneously. To meet the requirements of practical clinical usage (easy handling, high throughput and cost effectiveness), the pretreatment process was simplified (only including protein precipitation and mobile phase dilution steps) and the UPLC separation cycle was set within 6 min. The whole methodology was carefully validated according to the latest international guidelines showing the excellent selectivity, accuracy, precision, applicability and stability. After a 10 month clinical application, a retrospective analysis of 253 positive samples was carried out to investigate conformance with the Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie therapeutic reference range for Chinese patients. The results suggested good consistency for olanzapine, aripiprazole, paliperidone and ziprasidone, while for amisulpride, the plasma concentration level (445.2 ± 231.5 ng/mL) was relatively higher than the recommended range (100–320 ng/mL). We supposed that such phenomenon indicated the necessity of reconstructing a Chinese‐specific therapeutic reference range for amisulpride treatment, which would be helpful to improve medication efficiency and safety for Chinese patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号