首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dielectrophoretic (DEP) choking phenomenon is revisited for Janus particles that are transported electrokinetically through a microchannel constriction by a direct‐current (DC) electric field. The negative DEP force that would block a particle with a diameter significantly smaller than that of the constriction at its inlet is seen to be relaxed by the rotation of the Janus particle in a direction that minimizes the magnitude of the DEP force. This allows the particle to pass through the constriction completely. An arbitrary Lagrangian‐Eulerian (ALE) numerical method is used to solve the nonlinearly coupled electric field, flow field, and moving particle, and the DEP force is calculated by the Maxwell stress tensor (MST) method. The results show how Janus particles with non‐uniform surface potentials overcome the DEP force and present new conditions for the DEP choking by a parametric study. Particle transportation through microchannel constrictions is ubiquitous, and particle surface properties are more likely to be non‐uniform than not in practical applications. This study provides new insights of importance for non‐uniform particles transported electrokinetically in a microdevice.  相似文献   

2.
This paper presents a fundamental study of particle electrokinetic focusing in a single microchannel constriction. Through both experiments and simulations, we demonstrate that such dielectrophoresis‐induced particle focusing can be implemented in a much smaller magnitude of DC‐biased AC electric fields (10 kV/m in total) as compared to pure DC electric fields (up to 100 kV/m). This is attributed to the increase in the ratio of cross‐stream particle dielectrophoretic velocity to streamwise electrokinetic velocity as only the DC field component contributes to the latter. The effects of the 1 kHz frequency AC to DC electric field ratio on particle trajectories and velocity variations through the microchannel constriction are also examined, which are found to agree with the simulation results.  相似文献   

3.
Particle separation is a fundamental operation in the areas of biology and physical chemistry. A variety of force fields have been used to separate particles in microfluidic devices, among which electric field may be the most popular one due to its general applicability and adaptability. So far, however, electrophoresis‐based separations have been limited primarily to batchwise processes. Dielectrophoresis (DEP)‐based separations require in‐channel micro‐electrodes or micro‐insulators to produce electric field gradients. This article introduces a novel particle separation technique in DC electrokinetic flow through a planar double‐spiral microchannel. The continuous separation arises from the cross‐stream dielectrophoretic motion of particles induced by the non‐uniform electric field inherent to curved channels. Specifically, particles are focused by DEP to one sidewall of the first spiral, and then dielectrophoretically deflected toward the other sidewall of the second spiral at a particle‐dependent rate, leading to focused particle streams along different flow paths. This DEP‐based particle separation technique is demonstrated in an asymmetric double‐spiral microchannel by continuously separating a mixture of 5/10 μm particles and 3/5 μm particles.  相似文献   

4.
Tsai SL  Hong JL  Chen MK  Jang LS 《Electrophoresis》2011,32(11):1337-1347
This work presents a microfluidic system that can transport, concentrate, and capture particles in a controllable droplet. Dielectrophoresis (DEP), a phenomenon in which a force is exerted on a dielectric particle when it is subjected to a non-uniform electric field, is used to manipulate particles. Liquid dielectrophoresis (LDEP), a phenomenon in which a liquid moves toward regions of high electric field strength under a non-uniform electric field, is used to manipulate the fluid. In this study, a mechanism of droplet creation presented in a previous work that uses DEP and LDEP is improved. A driving electrode with a DEP gap is used to prevent beads from getting stuck at the interface between air and liquid, which is actuated with an AC signal of 200 V(pp) at a frequency of 100 kHz. DEP theory is used to calculate the DEP force in the liquid, and LDEP theory is used to analyze the influence of the DEP gap. The increment of the actuation voltage due to the electrode with a DEP gap is calculated. A set of microwell electrodes is used to capture a bead using DEP force, which is actuated with an AC signal of 20 V(pp) at a frequency of 5 MHz. A simulation is carried out to investigate the dimensions of the DEP gap and microwell electrodes. Experiments are performed to demonstrate the creation of a 100-nL droplet and the capture of individual 10-μm polystyrene latex beads in the droplet.  相似文献   

5.
We describe the development and testing of a setup that allows for DEP field‐flow fractionation (DEP‐FFF) of irreversibly electroporated, reversibly electroporated, and nonelectroporated cells based on their different polarizabilities. We first optimized the channel and electrode dimensions, flow rate, and electric field parameters for efficient DEP‐FFF separation of moderately heat‐treated CHO cells (50°C for 15 min) from untreated ones, with the former used as a uniform and stable model of electroporated cells. We then used CHO cells exposed to electric field pulses with amplitudes from 1200 to 2800 V/cm, yielding six groups containing various fractions of nonporated, reversibly porated, and irreversibly porated cells, testing their fractionation in the chamber. DEP‐FFF at 65 kHz resulted in distinctive flow rates for nonporated and each of the porated cell groups. At lower frequencies, the efficiency of fractionation deteriorated, while at higher frequencies the separation of individual elution profiles was further improved, but at the cost of cell flow rate slowdown in all the cell groups, implying undesired transition from negative into positive DEP, where the cells are pulled toward the electrodes. Our results demonstrate that fractionation of irreversibly electroporated, reversibly electroporated, and nonelectroporated cells is feasible at a properly selected frequency.  相似文献   

6.
A novel scheme for particle separation with insulator‐based dielectrophoresis (iDEP) was developed. This technique offers the capability for an inverted order in particle elution, where larger particles leave the system before smaller particles. Asymmetrically shaped insulating posts, coupled with direct current (DC) biased low‐frequency alternating current (AC) electric potentials, were used to successfully separate a mixture of 500 nm and 1 μm polystyrene particles (size difference of 0.5 μm in diameter). In this separation, the 1 μm particles were eluted first, demonstrating the discriminatory potential of this methodology. To extend this technique to biological samples, a mixture containing Saccharomyces cerevisiae cells (6.3 μm) and 2 μm polystyrene particles was also separated, with the cells being eluted first. The asymmetric posts featured a shorter sharp half and a longer blunt half; this produced an asymmetry in the forces exerted on the particles. The negative DC offset produced a net displacement of the smaller particles toward the upstream direction, while the post asymmetry produced a net displacement of the larger particles toward the downstream direction. This new iDEP approach provides a setup where larger particles are quickly concentrated at the outlet of the post array and can be released first when in a mixture with smaller particles. This new scheme offers an extra set of parameters (alternating current amplitude, DC offset, post asymmetry, and shape) that can be manipulated to obtain a desired separation. This asymmetric post iDEP technique has potential for separations where it is important to quickly elute and enrich larger and more fragile cells in biological samples.  相似文献   

7.
Insulator‐based dielectrophoresis has to date been almost entirely restricted to Newtonian fluids despite the fact that many of the chemical and biological fluids exhibit non‐Newtonian characteristics. We present herein an experimental study of the fluid rheological effects on the electroosmotic flow of four types of polymer solutions, i.e., 2000 ppm xanthan gum (XG), 5% polyvinylpyrrolidone (PVP), 3000 ppm polyethylene oxide (PEO), and 200 ppm polyacrylamide (PAA) solutions, through a constriction microchannel under DC electric fields of up to 400 V/cm. We find using particle streakline imaging that the fluid elasticity does not change significantly the electroosmotic flow pattern of weakly shear‐thinning PVP and PEO solutions from that of a Newtonian solution. In contrast, the fluid shear‐thinning causes multiple pairs of flow circulations in the weakly elastic XG solution, leading to a central jet with a significantly enhanced speed from before to after the channel constriction. These flow vortices are, however, suppressed in the strongly viscoelastic and shear‐thinning PAA solution.  相似文献   

8.
A completely new droplet breakup phenomenon is reported for droplets passing through a constriction in an electrokinetic flow. The breakup occurs during the droplet shape recovery process past the constriction throat by the interplay of the dielectrophoretic stress release and the interface energy for droplets with smaller permittivity than that of the ambient fluid. There are conditions for constriction ratios and droplet size that the droplet breakup occurs. The numerical predictions provided here require experimental verification, and then can give rise to a novel microfluidic device design with novel droplet manipulations.  相似文献   

9.
This paper presents the development and experimental analysis of a dielectrophoresis (DEP) system, which is used for the manipulation and separation of microparticles in liquid flow. The system is composed of arrays of microelectrodes integrated to a microchannel. Novel curved microelectrodes are symmetrically placed with respect to the centre of the microchannel with a minimum gap of 40 μm. Computational fluid dynamics method is utilised to characterise the DEP field and predict the dynamics of particles. The performance of the system is assessed with microspheres of 1, 5 and 12 μm diameters. When a high‐frequency potential is applied to microelectrodes a spatially varying electric field is induced in the microchannel, which creates the DEP force. Negative‐DEP behaviour is observed with particles being repelled from the microelectrodes. The particles of different dimensions experience different DEP forces and thus settle to separate equilibrium zones across the microchannel. Experiments demonstrate the capability of the system as a field flow fraction tool for sorting microparticles according to their dimensions and dielectric properties.  相似文献   

10.
Insulator-based dielectrophoresis (iDEP) exploits the electric field gradients formed around insulating structures to manipulate particles for diverse microfluidic applications. Compared to the traditional electrode-based dielectrophoresis, iDEP microdevices have the advantages of easy fabrication, free of water electrolysis, and robust structure, etc. However, the presence of in-channel insulators may cause thermal effects because of the locally amplified Joule heating of the fluid. The resulting electrothermal flow circulations are exploited in this work to trap and concentrate nanoscale particles (of 100 nm diameter and less) in a ratchet-based iDEP microdevice. Such Joule heating-enabled electrothermal enrichment of nanoparticles are found to grow with the increase of alternating current or direct current electric field. It also becomes more effective for larger particles and in a microchannel with symmetric ratchets. Moreover, a depth-averaged numerical model is developed to understand and simulate the various parametric effects, which is found to predict the experimental observations with a good agreement.  相似文献   

11.
The dielectrophoresis (DEP) phenomenon is used to separate platelets directly from diluted whole blood in microfluidic channels. By exploiting the fact that platelets are the smallest cell type in blood, we utilize the DEP-activated cell sorter (DACS) device to perform size-based fractionation of blood samples and continuously enrich the platelets in a label-free manner. Cytometry analysis revealed that a single pass through the two-stage DACS device yields a high purity of platelets (approximately 95%) at a throughput of approximately 2.2 x 10(4) cells/second/microchannel with minimal platelet activation. This work demonstrates gentle and label-free dielectrophoretic separation of delicate cells from complex samples and such a separation approach may open a path toward continuous screening of blood products by integrated microfluidic devices.  相似文献   

12.
This paper presents the development and experimental analysis of a curved microelectrode platform for the DEP deformation of breast cancer cells (MDA‐MB‐231). The platform is composed of arrays of curved DEP microelectrodes which are patterned onto a glass slide and samples containing MDA‐MB‐231 cells are pipetted onto the platform's surface. Finite element method is utilised to characterise the electric field gradient and DEP field. The performance of the system is assessed with MDA‐MB‐231 cells in a low conductivity 1% DMEM suspending medium. We applied sinusoidal wave AC potential at peak to peak voltages of 2, 5, and 10 Vpp at both 10 kHz and 50 MHz. We observed cell blebbing and cell shrinkage and analyzed the percentage of shrinkage of the cells. The experiments demonstrated higher percentage of cell shrinkage when cells are exposed to higher frequency and peak to peak voltage electric field.  相似文献   

13.
Recent studies have demonstrated the strong influences of fluid rheological properties on insulator-based dielectrophoresis (iDEP) in single-constriction microchannels. However, it is yet to be understood how iDEP in non-Newtonian fluids depends on the geometry of insulating structures. We report in this work an experimental study of fluid rheological effects on streaming DEP in a post-array microchannel that presents multiple contractions and expansions. The iDEP focusing and trapping of particles in a viscoelastic polyethylene oxide solution are comparable to those in a Newtonian buffer, which is consistent with the observations in a single-constriction microchannel. Similarly, the insignificant iDEP effects in a shear-thinning xanthan gum solution also agree with those in the single-constriction channel except that gel-like structures are observed to only form in the post-array microchannel under large DC electric fields. In contrast, the iDEP effects in both viscoelastic and shear-thinning polyacrylamide solution are significantly weaker than in the single-constriction channel. Moreover, instabilities occur in the electroosmotic flow and appear to be only dependent on the DC electric field. These phenomena may be associated with the dynamics of polymers as they are electrokinetically advected around and through the posts.  相似文献   

14.
This paper reports an impedance‐based system for the quantitative assessment of dielectrophoretic (DEP) focusing of single particles flowing in a microchannel. Particle lateral positions are detected in two electrical sensing zones placed before and after a DEP‐focusing region, respectively. In each sensing zone, particle lateral positions are estimated using the unbalance between the opposite pulses of a differential current signal obtained with a straightforward coplanar electrode configuration. The system is used to monitor the focusing of polystyrene beads of 7 or 10 μm diameter, under various conditions of DEP field intensities and flow rates that produce different degrees of focusing. This electrical approach represents a simple and valuable alternative to optical methods for monitoring of particle focusing systems.  相似文献   

15.
Previous studies have reported a lateral migration in particle electrophoresis through a straight rectangular microchannel. This phenomenon arises from the inherent wall‐induced electrical lift that can be exploited to focus and separate particles for microfluidic applications. Such a dielectrophoretic‐like force has been recently found to vary with the buffer concentration. We demonstrate in this work that the particle zeta potential also has a significant effect on the wall‐induced electrical lift. We perform an experimental study of the lateral migration of equal‐sized polystyrene particles with varying surface charges under identical electrokinetic flow conditions. Surprisingly, an enhanced focusing is observed for particles with a faster electrokinetic motion, which indicates a substantially larger electrical lift for particles with a smaller zeta potential. We speculate this phenomenon may be correlated with the particle surface conduction that is a strong function of particle and fluid properties.  相似文献   

16.
Insulator-based dielectrophoretic (iDEP) microdevices have been limited to work with Newtonian fluids. We report an experimental study of the fluid rheological effects on iDEP focusing and trapping of polystyrene particles in polyethylene oxide, xanthan gum, and polyacrylamide solutions through a constricted microchannel. Particle focusing and trapping in the mildly viscoelastic polyethylene oxide solution are slightly weaker than in the Newtonian buffer. They are, however, significantly improved in the strongly viscoelastic and shear thinning polyacrylamide solution. These observed particle focusing behaviors exhibit a similar trend with respect to electric field, consistent with a revised theoretical analysis for iDEP focusing in non-Newtonian fluids. No apparent focusing of particles is achieved in the xanthan gum solution, though the iDEP trapping can take place under a much larger electric field than the other fluids. This is attributed to the strong shear thinning-induced influences on both the electroosmotic flow and electrokinetic/dielectrophoretic motions.  相似文献   

17.
《Electrophoresis》2017,38(16):1988-1995
Inherent electrical properties of cells can be beneficial to characterize different cell lines and their response to experimental drugs. This paper presents a novel method to characterize the response of breast cancer cells to drug stimuli through use of off‐chip passivated‐electrode insulator‐based dielectrophoresis (OπDEP) and the application of AC electric fields. This work is the first to demonstrate the ability of OπDEP to differentiate between two closely related breast cancer cell lines, LCC1 and LCC9 while assessing their drug sensitivity to an experimental anti‐cancer agent, Obatoclax. Although both cell lines are derivatives of estrogen‐responsive MCF‐7 breast cancer cells, growth of LCC1 is estrogen independent and anti‐estrogen responsive, while LCC9 is both estrogen‐independent and anti‐estrogen resistant. Under the same operating conditions, LCC1 and LCC9 had different DEP profiles. LCC1 cells had a trapping onset (crossover) frequency of 700 kHz and trapping efficiencies between 30–40%, while LCC9 cells had a lower crossover frequency (100 kHz) and showed higher trapping efficiencies of 40–60%. When exposed to the Obatoclax, both cell lines exhibited dose‐dependent shifts in DEP crossover frequency and trapping efficiency. Here, DEP results supplemented with cell morphology and proliferation assays help us to understand the response of these breast cancer cells to Obatoclax.  相似文献   

18.
Microfluidic device embedding electrodes realizes cell manipulation with the help of dielectrophoresis. Cell manipulation is an important technology for cell sorting and cell population purification. Till now, the theory of dielectrophoresis has been greatly developed. Microfluidic devices with various arrangements of electrodes have been reported from the beginning of the single non‐uniform electric field to the later multiple physical fields. This paper reviews the research status of microfluidic device embedding electrodes for cell manipulation based on dielectrophoresis. Firstly, the working principle of dielectrophoresis is explained. Next, cell manipulation approaches based on dielectrophoresis are introduced. Then, different types of electrode arrangements in the microfluidic device for cell manipulation are discussed, including planar, multilayered and microarray dot electrodes. Finally, the future development trend of the dielectrophoresis with the help of microfluidic devices is prospected. With the rapid development of microfluidic technology, in the near future, high precision, high throughput, high efficiency, multifunctional, portable, economical and practical microfluidic dielectrophoresis will be widely used in the fields of biology, medicine, agriculture and so on.  相似文献   

19.
A polyimide substrate based microfluidic chip with thousands of comb‐shaped microelectrodes has been designed, fabricated, and tested for sterilization of bacteria by using pulsed electric field. The performance of bacteria sterilization as functions of the electric field strength, pulse number and width, treatment buffer, bacteria growth status, and bacteria enrichment by positive dielectrophoresis has been experimentally investigated on the microfluidic chip. Experimental results show that only 100 V are sufficient to obtain good sterilization of Escherichia coli. Higher electric field strength, bacteria enrichment by positive dielectrophoresis, longer pulse time, buffer with fewer components and nutritions, and suitable bacteria growth status also improve the sterilization of bacteria. In addition, configuration of the microelectrode array affects bacteria sterilization. This microfluidic device allows one to preconcentrate bacteria to a region with high electric field strength by using positive dielectrophoresis, and subsequently kill the enriched bacteria by applying a pulsed electric field through the same microelectrode array.  相似文献   

20.
Insulator-based dielectrophoresis (iDEP), an efficient technique with great potential for miniaturization, has been successfully applied for the manipulation of a wide variety of bioparticles. When iDEP is applied employing direct current (DC) electric fields, other electrokinetic transport mechanisms are present: electrophoresis and electroosmotic flow. In order to concentrate particles, iDEP has to overcome electrokinetics. This study presents the characterization of electrokinetic flow under the operating conditions employed with iDEP; in order to identify the optimal conditions for particle concentration employing DC-iDEP, microparticle image velocimetry (μPIV) was employed to measure the velocity of 1-μm-diameter inert polystyrene particles suspended inside a microchannel made from glass. Experiments were carried out by varying the properties of the suspending medium (conductivity from 25 to 100 μS/cm and pH from 6 to 9) and the strength of the applied electric field (50–300 V/cm); the velocities values obtained ranged from 100 to 700 μm/s. These showed that higher conductivity and lower pH values for the suspending medium produced the lowest electrokinetic flow, improving iDEP concentration of particles, which decreases voltage requirements. These ideal conditions for iDEP trapping (pH = 6 and σ m = 100 μS/cm) were tested experimentally and with the aid of mathematical modeling. The μPIV measurements allowed obtaining values for the electrokinetic mobilities of the particles and the zeta potential of the glass surface; these values were used with a mathematical model built with COMSOL Multiphysics software in order to predict the dielectrophoretic and electrokinetic forces exerted on the particles; the modeling results confirmed the μPIV findings. Experiments with iDEP were carried out employing the same microparticles and a glass microchannel that contained an array of cylindrical insulating structures. By applying DC electric fields across the insulating structures array, it was seen that the dielectrophoretic trapping was improved when the electrokinetic force was the lowest; as predicted by μPIV measurements and the mathematical model. The results of this study provide guidelines for the selection of optimal operating conditions for improving insulator-based dielectrophoretic separations and have the potential to be extended to bioparticle applications. Figure Comparison of experimental measurements and mathematical modeling of electrokinetic and dielectrophoretic effects on microparticles
Blanca H. Lapizco-EncinasEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号