首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A specific and sensitive LC‐MS/MS assay was developed to simultaneously quantify three structurally similar flavonoid glycosides – hyperin, reynoutrin and guaijaverin – in mouse plasma. Biosamples were prepared by solid‐phase extraction. Isocratic chromatographic separation was performed on an AichromBond‐AQ C18 column (250 × 2.1 mm, 5 μm) with methanol–acetonitrile–water–formic acid (20:25:55:0.1) as the mobile phase. Detection of hyperin, reynoutrin, guaijaverin and internal standard [luteolin‐7‐Oβ‐d ‐apiofuranosyl‐(1 → 6)‐β‐d ‐glucopyranoside] was achieved by ESI‐MS/MS in the negative ion mode using m/z 463 → m/z 300, m/z 433 → m/z 300, m/z 433 → m/z 300 and m/z 579 → m/z 285 transitions, respectively. Linear concentration ranges of calibration curves were 4.0–800.0 ng/mL for hyperin and reynoutrin and 8.0–1600.0 ng/mL for guaijaverin when 100 μL of plasma was analyzed. We used this validated method to study the pharmacokinetics of hyperin, reynoutrin and guaijaverin in mice following oral and intravenous administration. All three quercetin‐3‐O‐glycosides showed poor oral absorption in mice, and the absolute bioavailability of hyperin after oral administration of 100 mg/kg was 1.2%. Pretreatment with verapamil increased the peak concentration and area under the concentration–time curve of hyperin, which were significantly higher than the control values. The half‐life of hyperin with verapamil was significantly prolonged compared with that of the control. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
The purpose of this study was to develop an ultra‐performance liquid chromatography with tandem mass spectrometry (UPLC‐MS/MS) method to determine armepavine in mouse blood. Nuciferine was used as internal standard. Chromatographic separation was performed on a UPLC BEH (2.1 × 50 mm, 1.7 μm) column with a gradient elution of acetonitrile and 10 mmol/L ammonium acetate solution (containing 0.1% formic acid). The quantitative analysis was conducted in multiple reaction monitoring mode with m/z 314.1 → 106.9 for armepavine and m/z 296.2 → 265.1 for nuciferine. Calibration curves were linear (r > 0.995) over the concentration range 1–1000 ng/mL in mouse blood with a lowest limit of quantitation of 1 ng/mL. The intra‐ and inter‐day precisions of armepavine in mouse were < 13.5 and 10.8%, respectively. The accuracy ranged between 86.8 and 103.3%. Meanwhile, the average recovery was >70.7% and the matrix effect was within the range 109.5–113.7%. All of the obtained data confirmed the satisfactory sensitivity and selectivity of the developed method which was then successfully applied to evaluate the pharmacokinetic behavior of armepavine in mouse for the first time. The bioavailability of armepavine in mouse was calculated to be 11.3%.  相似文献   

3.
An ultra‐performance liquid chromatography with tandem mass spectrometry (UPLC–MS/MS) method was developed and validated to concurrently determine rhynchophylline and hirsutine in rat plasma. The sample preparation of rat plasma was achieved by alkalization and liquid–liquid extraction. The mass transition of precursor ion → product ion pairs were monitored at m/z 385.2 → 160.0 for rhynchophylline, m/z 369.3 → 144.0 for hirsutine and m/z 414.0 → 220.0 for noscapine (internal standard). This method revealed linear relationships from 2.5 to 50 ng/mL (r2 > 0.997) for rhynchophylline and from 2.5 to 50 ng/mL (r2 > 0.998) for hirsutine. The limit of quantification values for rhynchophylline and hirsutine in rat plasma were both 2.5 ng/mL. Intra‐day and inter‐day precisions were within 10.6% and 12.5%, respectively, for rhynchophylline and hirsutine, and the accuracy (bias) was <10%. Liquid–liquid extraction of rat plasma samples resulted in insignificant matrix effect, and the extraction recoveries were >83.6% for rhynchophylline, 73.4% for hirsutine and 90.7% for the internal standard. This method was applied successfully to a pharmacokinetic study of rhynchophylline and hirsutine in rats after oral administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A selective and sensitive liquid chromatography–tandem mass spectrometry method was developed and validated for investigating the pharmacokinetics of umbelliferone, apigenin, genkwanin and hydroxygenkwanin after oral administration of Daphne genkwa extract. Plasma samples were treated by protein precipitation with acetonitrile. Analytes were detected by triple‐quadrupole MS/MS with an ESI source in negative selection reaction monitoring mode. The transitions of m/z 161 → 133 for umbelliferone, m/z 269 → 117 for apigenin, m/z 283 → 268 for genkwanin and m/z 299 → 284 for hydroxygenkwanin were confirmed for quantification. Chromatographic separation was conducted using an Eclipse XDB‐C18 column, and the applied isocratic elution program allowed for simultaneous determination of the four analytes for a total run time of 2.5 min. The linearity was validated over the plasma concentration ranges of 1.421–1421 ng/mL for umbelliferone, 0.845–845 ng/mL for apigenin, 1.025–1025 ng/mL for genkwanin and 0.845–845 ng/mL for hydroxygenkwanin. The extraction recovery rate was >82.7% for each analyte. No apparent matrix effect was observed during the bioanalysis. After full validation, the proposed method was successfully applied to compare the pharmacokinetics of these analytes between normal and arthritic rats.  相似文献   

5.
Euphol is a potential pharmacologically active ingredient isolated from Euphorbia kansui. A simple, rapid, and sensitive method to determine euphol in rat plasma was developed based on liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) for the first time. The analyte and internal standard (IS), oleanic acid, were extracted from plasma with methanol and chromatographied on a C18 short column eluted with a mobile phase of methanol–water–formic acid (95:5:0.1, v/v/v). Detection was performed by positive ion atmospheric pressure chemical ionization in selective reaction monitoring mode. This method monitored the transitions m/z 409.0 → 109.2 and m/z 439.4 → 203.2 for euphol and IS, respectively. The assay was linear over the concentration range 27–9000 ng/mL, with a limit of quantitation of 27 ng/mL. The accuracy was between –7.04 and 4.11%, and the precision was <10.83%. This LC‐MS/MS method was successfully applied to investigate the pharmacokinetic study of euphol in rats after intravenous (6 mg/kg) and oral (48 mg/kg) administration. Results showed that the absolute bioavailability of euphol was approximately 46.01%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
An accurate and sensitive LC–MS/MS method for determining thalidomide, 5‐hydroxy thalidomide and 5′‐hydroxy thalidomide in human plasma was developed and validated using umbelliferone as an internal standard. The analytes were extracted from plasma (100 μL) by liquid–liquid extraction with ethyl acetate and then separated on a BETASIL C18 column (4.6 × 150 mm, 5 μm) with mobile phase composed of methanol–water containing 0.1% formic acid (70:30, v/v) in isocratic mode at a flow rate of 0.5 mL/min. The detection was performed using an API triple quadrupole mass spectrometer in atmospheric pressure chemical ionization mode. The precursor‐to‐product ion transitions m/z 259.1 → 186.1 for thalidomide, m/z 273.2 → 161.3 for 5‐hydroxy thalidomide, m/z 273.2 → 146.1 for 5′‐hydroxy thalidomide and m/z 163.1 → 107.1 for umbelliferone (internal standard, IS) were used for quantification. The calibration curves were obtained in the concentrations of 10.0–2000.0 ng/mL for thalidomide, 0.2–50.0 ng/mL for 5‐hydroxy thalidomide and 1.0–200.0 ng/mL for 5′‐hydroxy thalidomide. The method was validated with respect to linear, within‐ and between‐batch precision and accuracy, extraction recovery, matrix effect and stability. Then it was successfully applied to estimate the concentration of thalidomide, 5‐hydroxy thalidomide and 5′‐hydroxy thalidomide in plasma samples collected from Crohn's disease patients after a single oral administration of thalidomide 100 mg.  相似文献   

7.
A sensitive high‐performance liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed for the quantification of genipin in rat plasma after hydrolysis with sulfatase. Genipin could not be detected directly as it could be transformed into other forms such as conjugated‐genipin immediately after administration. The conjugated genipin could be hydrolyzed by sulfatase to genipin. The conditions of hydrolysis were investigated. Genipin and the internal standard, peoniflorin (IS), were separated on a reversed‐phase column by gradient elution and detected using an electrospray ion source on a 4000 QTrap triple‐quadrupole mass spectrometer. The quantification was performed using multiple reaction monitoring with selected precursor‐product ion pairs of the transitions m/z 225.0 → 122.7 and m/z 479.1 → 449.1 for genipin and peoniflorin. The assay was linear over the concentration range of 1.368–1368 ng/mL, with correlation coefficients of 0.9989. Intra‐ and inter‐day precisions and accuracy were all within 15%. The lower limit of quantification was 1.368 ng/mL. The recoveries of genipin and peoniflorin were more than 53.3 and 51.2%. The highly sensitive method was successfully applied to estimated pharmacokinetic parameters of genipin following oral and intravenous administration to rats. The absolute bioavailability of genipin was 80.2% in rat, which is the first report. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Celosin A (CA), a natural compound isolated from Celosia argentea L., has been shown significant hepatoprotective effect on AHNP‐induced liver injury. This study described a rapid and sensitive ultra‐high‐pressure liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) assay for determination of CA in rat plasma. Methanol‐mediated precipitation was used for sample pretreatment. Chromatographic separation was achieved on a T3 column with gradient elution using water and acetonitrile as mobile phase. Determination was obtained using an electrospray ionization source in negative selected reaction monitoring mode at the transitions of m/z 793.3 → m/z 661.2 and m/z 955.6 → m/z 793.2 for CA and IS, respectively. The assay was linear over the concentration range 0.25–2500 ng/mL (r > 0.995) with a lowest limit of quantification (LLOQ) of 0.25 ng/mL. The intra‐ and inter‐day precisions (RSD) were 1.65–9.84 and 2.46–13.49%, respectively, while accuracy (RR) ranged from 96.21 to 99.45%, respectively. The recovery ranged from 95.09 to 102.22% and the matrix effect from 98.29 to 100.13%. The analyte was stable under the tested storage conditions. The method has been successfully applied to a preclinical pharmacokinetic study in rats after a single intravenous (2 mg/kg) or oral (50 mg/kg) administration. The oral bioavailability of CA was ~1.94%; in addition, there was no difference between male and female rats. This is the first time of the use of an UHPLC–MS/MS method for determination of CA concentration in rat plasma and for evaluation of its pharmacokinetic behavior.  相似文献   

9.
A precise, high‐throughput and sensitive ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed for the determination of fluorochloridone (FLC) in rat plasma. The extraction of analytes from plasma samples was carried out by protein precipitation procedure using acetonitrile prior to UPLC‐MS/MS analysis. Verapamil was proved as a proper internal standard (IS) among many candidates. The chromatographic separation based on UPLC was well optimized. Multiple reaction monitoring in positive electrospray ionization was used with the optimized MS transitions at: m/z 312.0 → 292.0 for FLC and m/z 456.4 → 165.2 for IS. This method was well validated with good linear response (r2 > 0.998) observed over the investigated range of 3–3000 ng/mL and with satisfactory stability. This method was also characterized with adequate intra‐ and inter‐day precision and accuracy (within 12%) in the quality control samples, and with high selectivity and less matrix effect observed. Total running time was only 1.5 min. This method has been successfully applied to a pilot FLC pharmacokinetic study after oral administration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The aim of this study was to develop an analytical method to determine mequitazine in rat plasma and urine. Mequitazine was separated by UPLC–MS/MS equipped with a Kinetex core–shell C18 column (50 × 2.1 mm, 1.7 μm) using 0.1% (v/v) aqueous formic acid and acetonitrile containing 0.1% (v/v) formic acid as a mobile phase by gradient elution at a flow rate of 0.3 mL/min. Quantitation of this analysis was performed on a triple quadrupole mass spectrometer employing electrospray ionization technique operating in multiple reaction monitoring positive ion mode. Mass transitions were m/z 323.3 → 83.1 for mequitazine and 281.3 → 86.3 for imipramine as internal standard. Liquid–liquid extraction with ethyl acetate and protein precipitation with methanol were used for sample extraction. Chromatograms showed that the method had high resolution, sensitivity and selectivity without interference from plasma constituents. Calibration curves for mequitazine in rat plasma and urine were 0.02–200 ng/mL, showing excellent linearity with correlation coefficients (r2) >0.99. Both intra‐ and inter‐day precisions (CV%) were within 4.08% for rat plasma and urine. The accuracies were 99.58–102.03%. The developed analytical method satisfied the criteria of international guidance. It could be successfully applied to pharmacokinetic studies of mequitazine after oral and intravenous administration to rats.  相似文献   

11.
The aim of this study was to establish and validate a rapid, selective and reliable ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) for simultaneous quantitations of morin and morusin, and to investigate their pharmacokinetics difference between normal and diabetic rats after oral administration. Plasma samples were pretreated via protein precipitation with acetonitrile. Genkwanin was used as internal standard (IS). Analytes and IS were separated on a Thermo Hypersil Gold C18 column (50 × 4.6 mm, 3 μm) using gradient elution. The mobile phase consisted of acetonitrile and 0.1% formic acid in water at a flow rate of 0.5 mL/min. Mass spectrometry detection was carried out by means of negative electrospray ionization source and multipe‐reaction monitoring mode. The transitions of m/z 300.9 → 151.2 for morin, m/z 419.2 → 297.1 for morusin and m/z 283.1 → 268.2 for IS were chosen for quantification. Calibration curves were linear in the range of 1.01–504.2 ng/mL (r2 ≥ 0.99) for morin and 1.02–522.3 ng/mL (r2 ≥ 0.99) for morusin. The lower limit of quantification was 1.02 ng/mL for morin and 1.05 ng/mL for morusin. The extraction recovery was >85.1% for each analyte. No obvious matrix effect was observed under the present UPLC–MS/MS conditions during all of the bioanalysis. The stability study demonstrated that morin and morusin remained stable during the whole analytical procedure. The method was successfully applied to support the pharmacokinetic comparisons of morin and morusin between normal and diabetic rats.  相似文献   

12.
A sensitive and rapid ultra performance liquid chromatography tandem mass spectrometry (UPLC‐MS/MS) method was developed to determine voriconazole in human plasma. Sample preparation was accomplished through a simple one‐step protein precipitation with methanol. Chromatographic separation was carried out on an Acquity UPLC BEH C18 column using an isocratic mobile phase system composed of acetonitrile and water containing 1% formic acid (45:55, v/v) at a flow rate of 0.50 mL/min. Mass spectrometric analysis was performed using a QTrap5500 mass spectrometer coupled with an electrospray ionization source in the positive ion mode. The multiple reaction monitoring transitions of m/z 351.0 → 281.5 and m/z 237.1 → 194.2 were used to quantify voriconazole and carbamazepine (internal standard), respectively. The linearity of this method was found to be within the concentration range of 2.0–1000 ng/mL with a lower limit of quantification of 2.0 ng/mL. Only 1.0 min was needed for an analytical run. This fully validated method was successfully applied to the pharmacokinetic study after oral administration of 200 mg voriconazole to 20 Chinese healthy male volunteers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
14.
In this work, a sensitive and selective ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method for determination of hupehenine in rat plasma was developed and validated. After addition of imperialine as an internal standard (IS), protein precipitation by acetonitrile–methanol (9:1, v/v) was used to prepare samples. Chromatographic separation was achieved on a UPLC BEH C18 column (2.1 × 100 mm, 1.7 µm) with 0.1% formic acid and acetonitrile as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; multiple reaction monitoring mode was used for quantification using target fragment ions m/z 416.3 → 98.0 for hupehenine, and m/z 430.3 → 138.2 for IS. Calibration plots were linear throughout the range 2–2000 ng/mL for hupehenine in rat plasma. Mean recoveries of hupehenine in rat plasma ranged from 92.5 to 97.3%. Relative standard deviations of intra‐day and inter‐day precision were both <6%. The accuracy of the method was between 92.7 and 107.4%. The method was successfully applied to a pharmacokinetic study of hupehenine after either oral or intravenous administration. For the first time, the bioavailability of hupehenine was reported as 13.4%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
In this study, a simple and sensitive LC/MS/MS method was developed and validated for the determination of arctigenin in rat plasma. The MS detection was performed using multiple reaction monitoring at the transitions of m/z 373.2 → 137.3 for arctigenin and m/z 187.1 → 131.0 for psoralen (internal standard) with a Turbo IonSpray electrospray in positive mode. The calibration curves fitted a good linear relationship over the concentration range of 0.2–500 ng/mL. It was found that arctigenin is not stable enough at both room temperature and ?80 °C unless mixed with methanol before storage. The validated LC/MS/MS method was successfully applied for the pharmacokinetic study of arctigenin in rats. After intravenous injection of 0.3 mg/kg arctigenin injection to rats, the maximum concentration, half‐life and area under the concentration–time curve were 323 ± 65.2 ng/mL, 0.830 ± 0.166 and 81.0 ± 22.1 h ng/mL, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Nitazoxanide (NTZ) is a broad‐spectrum antimicrobial agent. Tizoxanide (T) and tizoxanide glucuronide (TG) are the major circulating metabolites after oral administration of NTZ. A rapid and specific LC–MS/MS method for the simultaneous quantification of T and TG in mouse plasma was developed and validated. A simple acetonitrile‐induced protein precipitation method was employed to extract two analytes and the internal standard glipizide from 50 μL of mouse plasma. The purified samples were resolved using a C18 column with a mobile phase consisting of acetonitrile and 5 mm ammonium formate buffer (containing 0.05% formic acid) following a gradient elution. An API 3000 triple quadrupole mass spectrometer was operated under multiple reaction‐monitoring mode with electrospray ionization. The precursor‐to‐product ion transitions m/z 264 → m/z 217 for T and m/z 440 → m/z 264 for TG were used for quantification. The developed method was linear in the concentration ranges of 1.0–500.0 ng/mL for T and 5.0–1000.0 ng/mL for TG. The intra‐ and inter‐day precision and accuracy of the quality control samples at low, medium and high concentrations exhibited an RSD of <13.2% and the accuracy values ranged from ?9.6 to 9.3%. We used this validated method to study the pharmacokinetics of T and TG in mice following oral administration of NTZ. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
A simple, practical, accurate and sensitive liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and fully validated for the quantitation of guanfacine in beagle dog plasma. After protein precipitation by acetonitrile, the analytes were separated on a C18 chromatographic column by methanol and water containing 0.1% (v/v) formic acid with a gradient elution. The subsequent detection utilized a mass spectrometry under positive ion mode with multiple reaction monitoring of guanfacine and enalaprilat (internal standard) at m/z 246.2 → 159.0 and m/z 349.2 → 205.9, respectively. Good linearity was obtained over the concentration range of 0.1–20 ng/mL for guanfacine in dog plasma and the lower limit of quantification of this method was 0.1 ng/mL. The intra‐ and inter‐day precisions were <10.8% relative standard deviation with an accuracy of 92.9–108.4%. The matrix effects ranged from 89.4 to 100.7% and extraction recoveries were >90%. Stability studies showed that both analytes were stable during sample preparation and analysis. The established method was successfully applied to an in vivo pharmacokinetic study in beagle dogs after a single oral dose of 4 mg guanfacine extended‐release tablets. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A sensitive and selective liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method for the simultaneous determination of metacavir and its two metabolites in rat plasma was developed and validated. Tinidazole was used as an internal standard and plasma samples were pretreated with one‐step liquid–liquid extraction. In addition, these analytes were separated using an isocratic mobile phase on a reverse‐phase C18 column and analyzed by MS in the selected reaction monitoring mode. The monitored precursor to product‐ion transitions for metacavir, 2′,3′‐dideoxyguanosine, O‐methylguanine and the internal standard were m/z 266.0 → 166.0, m/z 252.0 → 152.0, m/z 166.0 → 149.0 and m/z 248.0 → 202.0, respectively. The standard curves were found to be linear in the range of 1–1000 ng/mL for metacavir, 5–5000 ng/mL for 2′,3′‐dideoxyguanosine and 1–1000 ng/mL for O‐methylguanine in rat plasma. The precision and accuracy for both within‐ and between‐batch determination of all analytes ranged from 2.83 to 9.19% and from 95.86 to 111.27%, respectively. No significant matrix effect was observed. This developed method was successfully applied to an in vivo pharmacokinetic study after a single intravenous dose of 20 mg/kg metacavir in rats. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
A selective and sensitive liquid chromatography–tandem mass spectrometry method was developed for simultaneous determination of etoricoxib in human plasma. Chromatography was performed on an Acquity UPLC HSS T3 column (1.8 μm, 50 × 2.1 mm), with a flow rate of 0.600 mL/min, using a gradient elution with acetonitrile and water which contained 2 mm ammonium acetate as the mobile phase. Detection was carried out on Triple QuadTM 5500 mass spectrometer under positive‐ion multiple reaction monitoring mode. The respective mass transitions used for quantification of etoricoxib and etoricoxib‐d3 were m/z 359.0 → 280.1 and m/z 362.0 → 280.2. Calibration curves were linear over the concentration range of 5–5000 ng/mL. The validated method was applied in the pharmacokinetic study of etoricoxib in Chinese healthy volunteers under fed and fasted conditions. After a single oral dose of 120 mg, the main pharmacokinetic parameters of etoricoxib in fasted and fed groups were respectively as follows: peak concentration, 2364.78 ± 538.01 and 1874.55 ± 367.90 ng/mL; area under the concentration–time curve from 0 to 120 h, 44,605.53 ± 15,266.66 and 43,516.33 ± 12,425.91 ng h/mL; time to peak concentration, 2.00 and 2.50 h; and half‐life, 24.08 ± 10.06 and 23.64± 6.72 h. High‐fat food significantly reduced the peak concentration of etoricoxib (p = 0.001) but had no effect on the area under the concentration–time curve.  相似文献   

20.
A selective and sensitive liquid chromatography tandem mass spectrometry method (LC‐MS/MS) was developed and validated for the determination of cefdinir in rat plasma and urine. Following a simple protein precipitation using methanol, chromatographic separation was achieved with a run time of 10 min using a Synergi 4 µ polar‐RP 80A column (150 × 2.0 mm, 4 µm) with a mobile phase consisting of 0.1% formic acid in water and methanol (65:35, v/v) at a flow rate of 0.2 mL/min. The protonated precursor and product ion transitions for cefdinir (m/z 396.1 → 227.2) and cefadroxil, an internal standard (m/z 364.2 → 208.0) were monitored in the multiple reaction monitoring in positive ion mode. The calibration curves for plasma and urine were linear over the concentration range 10–10,000 ng/mL. The lower limit of quantification was 10 ng/mL. All accuracy values were between 95.1 and 113.0% and the intra‐ and inter‐day precisions were <13.0% relative standard deviation. The stability under various conditions in rat plasma and urine was also found to be acceptable at three concentrations. The developed method was applied successfully to the pharmacokinetic study of cefdinir after oral and intravenous administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号